Skip to main content
Log in

Ionothermal Synthesis of Two New Thioantimonates with Transition Metal Regulation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Under the regulation of transition metal Ag+, two new metal chalcogenides Rb2Sb4S7 and RbAgSb4S7·H2O have been prepared by ionothermal method under mild temperature. The crystal structure of Rb2Sb4S7 possesses two kind of metal centers [SbS3]3− triangular pyramid and [SbS4]5− twisted tetrahedron, and form a one-dimensional (1-D) cluster chain with free alkali metal cations. RbAgSb4S7·H2O possesses [SbS3]3− triangular pyramid, [SbS4]5− and [AgS4]7− twisted tetrahedrons, and exhibits a unique three-dimensional (3-D) framework with six kinds of member rings (MR), free alkali metal cations and free H2O molecules. Especially, 20-MR is first found in thioantimonates. The band gaps of Rb2Sb4S7 and RbAgSb4S7·H2O are 1.73 and 1.85 eV, respectively, which indicates that these two compounds can act as semiconductor materials. And the birefringences of Rb2Sb4S7 and RbAgSb4S7·H2O are calculated to be 0.182 and 0.065 at 1064 nm, respectively. Under the same synthesis condition, the addition of transition metal Ag+ has a great influence on their crystal structures and band gaps, which provides the possibility for designing and synthesizing diversified chalcogenides under ionothermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. X. Liu, M. L. Qin, S. Guo, C. P. Li, Q. Su, X. X. Cao, G. Z. Fang, and S. Q. Liang (2021). Mater. Chem. Front. 5, 1694.

    Article  CAS  Google Scholar 

  2. L. N. Nie and Q. C. Zhang (2017). Inorg. Chem. Front. 4, 1953–1962.

    Article  CAS  Google Scholar 

  3. S. Kumar, D. Codony, I. Arias, and P. Suryanarayana (2021). Nanoscale 13, 1600.

    Article  CAS  PubMed  Google Scholar 

  4. N. F. Zheng, X. H. Bu, H. W. Lu, Q. C. Zhang, and P. Y. Feng (2005). J. Am. Chem. Soc. 127, 11963.

    Article  CAS  PubMed  Google Scholar 

  5. S. P. Guo, Y. Chi, and G. C. Guo (2017). Coord. Chem. Rev. 335, 44.

    Article  CAS  Google Scholar 

  6. K. Y. Wang, M. L. Feng, J. R. Lia, and X. Y. Huang (2013). J. Mater. Chem. A 1, 1709.

    Article  CAS  Google Scholar 

  7. S. S. Han, W. D. Yao, S. X. Yu, Y. L. Sun, A. H. Gong, and S. P. Guo (2021). Inorg. Chem. 60, 3375.

    Article  CAS  PubMed  Google Scholar 

  8. Q. C. Zhang, I. Chung, J. I. Jang, J. B. Ketterson, and M. G. Kanatzidis (2009). Chem. Mater. 21, 12.

    Article  CAS  Google Scholar 

  9. Q. C. Zhang, X. H. Bu, Z. E. Lin, T. Wu, and P. Y. Feng (2008). Inorg. Chem. 47, 9724.

    Article  CAS  PubMed  Google Scholar 

  10. Y. Liu, P. D. Kanhere, C. L. Wong, Y. F. Tian, Y. H. Feng, F. Boey, T. Wu, H. Y. Chen, T. J. White, Z. Chen, and Q. C. Zhang (2010). J. Solid State Chem. 183, 2644.

    Article  CAS  Google Scholar 

  11. G. Yang, L. H. Li, C. Wu, M. G. Humphrey, and C. Zhang (2019). Inorg. Chem. 58, 12582.

    Article  CAS  PubMed  Google Scholar 

  12. H. G. Yao, M. Ji, S. H. Ji, R. C. Zhang, Y. L. An, and G. L. Ning (2009). Cryst. Growth Des. 9, 3821.

    Article  CAS  Google Scholar 

  13. H. G. Yao, P. Zhou, S. H. Ji, R. C. Zhang, M. Ji, Y. L. An, and G. L. Ning (2010). Inorg. Chem. 49, 1186.

    Article  CAS  PubMed  Google Scholar 

  14. M. L. Zhou, Y. Yang, Y. W. Guo, Z. S. Lin, J. Y. Yao, Y. C. Wu, and C. T. Chen (2017). Chem. Mater. 29, 7993.

    Article  CAS  Google Scholar 

  15. B. W. Liu, C. L. Hu, H. Y. Zeng, X. M. Jiang, and G. C. Guo (2018). Adv. Opt. Mater. 6, 1800156.

    Article  CAS  Google Scholar 

  16. N. Zhen, K. Wu, Y. Wang, Q. Li, W. H. Gao, D. W. Hou, Z. H. Yang, H. D. Jiang, Y. J. Dong, and S. L. Pan (2016). Dalton Trans. 45, 10681.

    Article  CAS  PubMed  Google Scholar 

  17. R. H. Duan, R. A. Li, P. F. Liu, H. Lin, Y. Wang, and L. M. Wu (2018). Cryst. Growth Des. 18, 5609.

    Article  CAS  Google Scholar 

  18. W. Feng, W. Zheng, and P. A. Hu (2014). Phys. Chem. Chem. Phys. 16, 19340.

    Article  CAS  PubMed  Google Scholar 

  19. W. S. Sheldrick and M. Wachhold (1997). Angew. Chem. Int. Ed. 36, 204.

    Article  Google Scholar 

  20. M. G. Kanatzidis and C. Sutorik (1995). Prog. Inorg. Chem. 43, 151.

    CAS  Google Scholar 

  21. G. D. Zhang, P. Z. Li, J. F. Ding, Y. Liu, W. W. Xiong, L. N. Nie, T. Wu, Y. L. Zhao, A. I. Y. Tok, and Q. C. Zhang (2014). Inorg. Chem. 53, 10248.

    Article  CAS  PubMed  Google Scholar 

  22. K. Z. Du, M. L. Feng, J. R. Li, and X. Y. Huang (2013). CrystEngComm. 15, 5594.

    Article  CAS  Google Scholar 

  23. Z. Ma, J. Yu, and S. Dai (2010). Adv. Mater. 22, 261.

    Article  CAS  PubMed  Google Scholar 

  24. K. Biswas, Q. C. Zhang, I. Chung, J. H. Song, J. Androulakis, A. J. Freeman, and M. G. Kanatzidis (2010). J. Am. Chem. Soc. 132, 14760.

    Article  CAS  PubMed  Google Scholar 

  25. G. Yang, X. X. Jiang, C. Wu, Z. S. Lin, Z. P. Huang, M. G. Humphrey, and C. Zhang (2021). Dalton Trans. 50, 3568.

    Article  CAS  PubMed  Google Scholar 

  26. W. M. Wendlandt and H. G. Hecht, Reflectance spectroscopy (Interscience, New York, 1966).

    Google Scholar 

  27. G. Kresse and J. Furthmuller (1996). Phys. Rev. B 54, 11169.

    Article  CAS  Google Scholar 

  28. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Article  CAS  PubMed  Google Scholar 

  29. P. E. Blochl (1994). Phys. Rev. B. 50, 17953.

    Article  CAS  Google Scholar 

  30. G. Kresse and D. Joubert (1999). Phys. Rev. B 59, 1758.

    Article  CAS  Google Scholar 

  31. M86-Exx078 APEX2 User Manual (Bruker Analytical X-ray Instruments, Inc.: Madison, WI, 2005).

  32. G. M. Sheldrick, SHELXTL, crystallographic software package, v.5.1 (Bruker-AXS, Madison, 1997).

    Google Scholar 

  33. A. L. Spek, PLATON (Utrecht University, Utrecht, 2001).

    Google Scholar 

  34. S. S. Batsanov (2001). Inorg. Mater. 01, 87.

    Google Scholar 

  35. D. Guenter and S. Herbert (1978). Z. Anorg. Allg. Chem. 441, 93.

    Article  Google Scholar 

  36. W. S. Sheldrick and H. J. Hausle (1988). Z. Anorg. Allg. Chem. 557, 105.

    Article  CAS  Google Scholar 

  37. A. V. Kasatkin, E. Makovicky, J. Plášil, R. Škoda, A. A. Agakhanov, S. Y. Stepanov, and R. S. Palamarchuk (2020). Mineral. Mag. 84, 738.

    Article  CAS  Google Scholar 

  38. A. V. Kasatkin, E. Makovicky, J. Plášil, R. Škoda, A. A. Agakhanov, I. I. Chaikovskiy, E. A. Vlasov, and I. V. Pekov (2020). Can. Mineral. 58, 587.

    Article  CAS  Google Scholar 

  39. E. M. Heppke, S. Klenner, O. Janka, R. Pöttgen, T. Bredow, and M. Lerch (2021). Inorg. Chem. 60, 2730.

    Article  CAS  PubMed  Google Scholar 

  40. K. Y. Wang, M. L. Feng, D. N. Kong, S. J. Liang, L. Wu, and X. Y. Huang (2012). CrystEngComm. 14, 90.

    Article  CAS  Google Scholar 

  41. M. L. Feng, Z. L. Xie, and X. Y. Huang (2009). Inorg. Chem. 48, 3904.

    Article  CAS  PubMed  Google Scholar 

  42. Y. K. Chen, M. C. Chen, L. J. Zhou, L. Chen, and L. M. Wu (2013). Inorg. Chem. 52, 8334.

    Article  CAS  PubMed  Google Scholar 

  43. M. C. Chen, L. H. Li, Y. B. Chen, and L. Chen (2011). J. Am. Chem. Soc. 133, 4617.

    Article  CAS  PubMed  Google Scholar 

  44. H. J. Zhao, Y. F. Zhang, and L. Chen (2012). J. Am. Chem. Soc. 134, 1993.

    Article  CAS  PubMed  Google Scholar 

  45. X. He, D. J. Singh, P. Boon-on, M. W. Lee, and L. J. Zhang (2018). J. Am. Chem. Soc. 140, 18058.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 51432006 and 51172100), the Ministry of Science and Technology of China (No. 2011DFG52970), the Ministry of Education of China for the Changjiang Innovation Research Team (No. IRT14R23), the Ministry of Education and the State Administration of Foreign Experts Affairs for the 111 Project (No. B13025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinfang Zhang or Chi Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Wu, C., Zhang, J. et al. Ionothermal Synthesis of Two New Thioantimonates with Transition Metal Regulation. J Clust Sci 33, 1457–1465 (2022). https://doi.org/10.1007/s10876-021-02076-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02076-7

Keywords

Navigation