Skip to main content
Log in

Green Biosynthesis of CdS NPs and CdS/Fe3O4 NCs by Hawthorn Plant Extract for Photodegradation of Methyl Orange Dye and Antibacterial Applications

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the present study, green nanomaterials were synthesized using hawthorn plant extract as a natural stabilizer, reducing and capping agent. Biosynthesized CdS nanoparticles (NPs) and the coupled CdS/Fe3O4 nanocomposites (NCs) have been verified by various techniques such as XRD, SEM, EDS, TEM, FTIR and Uv–Vis. The average size about 24.2 nm was estimated for the composite crystals of SEM images and XRD (by the Scherrer and Williamson-Hall methods). The EDS results showed a mole ratio of 1:1 for the CdS NPs and 1:2 for CdS/Fe3O4 nanocomposite. Photocatalytic activity studies have shown that green synthesized CdS/Fe3O4 NCs (dosage: 0.1 g/L) have high photocatalytic activity toward photodegradation of methyl orange (MO) 1.2 × 10–5 M in aqueous solution under UV irradiation. Impacts of reaction conditions such as solution pH of rage (3–10) and contact time for about 105 min on the photodegradation rate of MO dye by CdS/Fe3O4 NCs photocatalysts have been investigated. Photocatalytic experimental results showed that the highest photodegradation rates occurred in a basic solutions at pH 10. Adsorption kinetics followed the pseudo-first-order kinetics model for photodegradation of MO. The adsorption kinetics results showed that degradation rate was increased toward increase of pH of 3 to 10 with apparent rate constant (0.090, 0.107, 0.187 and 0.268 min−1), respectively. In addition, the antibacterial effect of CdS/Fe3O4 NCs against pathogenic bacteria was tested, which revealed that nanocomposites had moderate antibacterial activity against both gram-positive (Enterobacter aeruginosa) and gram-negative (E. coli, Pseudomonas aeruginosa, and Klebsiella pneumonia) at different concentrations of CdS/Fe3O4 NCs (0.001 to 0.025 g/ml).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Senobari and A. Nezamzadeh-Ejhieh (2018). A p-n junction NiO-CdS nanoparticles with enhanced photocatalytic activity: a response surface methodology study. J. Molecul. Liq. 257, 173–183.

    Article  CAS  Google Scholar 

  2. S. A. Mirsalari and A. Nezamzadeh-Ejhieh (2021). CdS–Ag3PO4 nano-catalyst: A brief characterization and kinetic study towards methylene blue photodegradation. Mater. Sci. Semiconduct. Process.. 122, 105455–105464.

    Article  CAS  Google Scholar 

  3. S. A. Jadhava, H. B. Garudb, A. H. Patil, and G. D. Patil (2019). Recent advancements in silica nanoparticles based technologies for removal of dyes from water. Colloid Interface Sci. Commun. 30, 100181–100192.

    Article  CAS  Google Scholar 

  4. J. C. G. Sousa, A. R. Ribeiro, M. O. Barbosa, M. F. R. Pereira, and A. M. T. Silva (2018). A review on environmental monitoring of water organic pollutants identifed by EU guidelines. J. Hazard. Mater 344, 146–162.

    Article  CAS  PubMed  Google Scholar 

  5. M. Hassaan, A. E. Nemr, and M. A. Hassaan (2017). Health and environmental impacts of dyes: mini review. Am. J. Environ. Sci. Eng. 1, 64–67.

    Google Scholar 

  6. G. Ciardelli, L. Corsi, and M. Marcucci (2001). Membrane separation for wastewater reuse in the textile industry. Resour. Conserv. Recycl. 31, 189–197.

    Article  Google Scholar 

  7. S. Sekar, M. Surianarayanan, V. Ranganathan, D. R. MacFarlane, and A. B. Mandal (2012). Choline-based ionic liquids-enhanced biodegradation of azo dyes. Environ. Sci. Technol. 46, 4902–4908.

    Article  CAS  PubMed  Google Scholar 

  8. J. S. Piccin, G. L. Dotto, M. L. G. Vieira, and L. A. A. Pinto (2011). Kinetics and mechanism of the food dye FD&C red 40 adsorption onto chitosan. J. Chem. Eng. Data 56, 3759–3765.

    Article  CAS  Google Scholar 

  9. T. Soltani and M. H. Entezari (2013). Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity in degradation of Rhodamine B under solar light irradiation. Chem. Eng. J. 223, 145–154.

    Article  CAS  Google Scholar 

  10. B. Srinivas, B. G. Kumar, and K. Muralidharan (2015). Stabilizer free copper sulphide nanostructures for rapid photocatalytic decomposition of rhodamine B. J. Mol. Catal. A. Chem 410, 8–18.

    Article  CAS  Google Scholar 

  11. M. Naushad, S. Rajendran, Lichtfouse, E. Green Photocatalysts, in Environmental Chemistry for a Sustainable World (Springer Nature Switzerland AG, 2020, 34.

  12. S. G. Kumar and L. G. Devi (2011). Review on modifed TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115, 13211–13241.

    Article  CAS  PubMed  Google Scholar 

  13. X. Wang, J. Liu, S. Leong, X. Lin, J. Wei, B. Kong, Y. Xu, Z. X. Low, J. Yao, and H. Wang (2016). Rapid construction of ZnO@ZIF-8 heterostructures with size selective photocatalysis properties. ACS Appl. Mater. Interfaces 8, 9080–9087.

    Article  CAS  PubMed  Google Scholar 

  14. A. Gnanaprakasam, V. M. Sivakumar, P. L. Sivayogavalli, and M. T. Murugan (2015). Characterization of TiO2 and ZnO nanoparticles and their applications in photocatalytic degradation of azo dyes. Ecotoxicol. Environ. Sa.f. 121, 121–125.

    Article  CAS  Google Scholar 

  15. N. Hariprasad, S. G. Anju, E. P. Yesodharan, and Y. Suguna (2013). Sunlight induced removal of Rhodamine B fromwater through semiconductor photocatalysis: effects of adsorption, reaction conditions and additives. Res. J. Mater. Sci. 1, 19–17.

    Google Scholar 

  16. C. B. Ong, L. Y. Ng, and A. W. Mohammad (2018). A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sust Energ Rev 81, 536–551.

    Article  CAS  Google Scholar 

  17. K. Tanaka, K. Padermpole, and T. Hisanaga (2000). Photocatalytic degradation of commercial azo dyes. Water Res 34, 327–333.

    Article  CAS  Google Scholar 

  18. U. T. D. Thuy, N. Q. Liem, C. M. Parlett, G. M. Lalev, and K. Wilson (2014). Synthesis of CuS and CuS/ZnS core/shell nanocrystals for photocatalytic degradation of dyes under visible light. Catal Commun. 44, 62–67.

    Article  CAS  Google Scholar 

  19. H. Derikvandi and A. Nezamzadeh-Ejhieh (2017). Comprehensive study on enhanced photocatalytic activity of heterojunction ZnS-NiS/zeolite nanoparticles: experimental design based on response surface methodology (RSM), impedance spectroscopy and GC-MASS studies. J. Colloid Interface Sci. 490, 652–664.

    Article  CAS  PubMed  Google Scholar 

  20. S. Ghattavi and A. Nezamzadeh-Ejhieh (2020). GC-MASS detection of methyl orange degradation intermediates by AgBr/g-C3N4: Experimental design, bandgap study, and characterization of the catalyst. Int. J Hydrogen Energy 45, 24636–24656.

    Article  CAS  Google Scholar 

  21. M. Rezaei and A. Nezamzadeh-Ejhieh (2020). The ZnO-NiO nano-composite: a brief characterization, kinetic and thermodynamic study and study the Arrhenius model on the sulfasalazine photodegradation. Int J Hydrogen Energy 45, 24749–24764.

    Article  CAS  Google Scholar 

  22. N. Omrani and A. Nezamzadeh-Ejhieh (2020). Photodegradation of sulfasalazine over Cu2O-BiVO4-WO3 nano-composite: characterization and experimental design. Inter. J. Hydrogen Energy 45, 19144–19162.

    Article  CAS  Google Scholar 

  23. D. Zhao, G. Sheng, C. Chen, and X. Wang (2012). Enhanced photocatalytic degradation in methylene Orange under visible irradiation on grapheme@TiO2 dyade structure. Appl. Catal. B Environ. 111, 303–308.

    Article  CAS  Google Scholar 

  24. K. Azad and P. Gajanan (2017). Photodegradation of methyl orange in aqueous solution by the visible light active Co:La:TiO2 nanocomposite. Chem. Sci. J. 8 (3), 1000164–1000174.

    Google Scholar 

  25. H. Zabihi-Mobarakeh and A. Nezamzadeh-Ejhieh (2015). Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2, 4-dinitroaniline aqueous solution. J. Ind. Eng. Chem. 26, 315–321.

    Article  CAS  Google Scholar 

  26. B. Rohit, S. Madhulika, and D. Bahadur (2013). Visible light-driven nanocomposites (BiVO4/CuCr2O4) for effcient degradation of organic dye. Dalton Trans. 42, 6736–6744.

    Article  CAS  Google Scholar 

  27. R. Abazari and A. R. Mahjoub (2018). Amine-functionalized Al-MOF#@yxSm2O3−ZnO: a visible lilght-driven nanocomposite with excellent photocatalytic activity for the photo-degradation of amoxicillin. Inorg. Chem. 57, 2529–2545.

    Article  CAS  PubMed  Google Scholar 

  28. A. Nezamzadeh-Ejhieh and Z. Banan (2012). Sunlight assisted photodecolorization of crystal violet catalyzed by CdS nanoparticles embedded on zeolite A. Desalination 284, 157–166.

    Article  CAS  Google Scholar 

  29. N. Omrani and A. Nezamzadeh-Ejhieh (2020). Focus on scavengers’ effects and GC-MASS analysis of photodegradation intermediates of sulfasalazine by Cu2O/CdS nanocomposite. Separation and Purification Technology 235, 116228–116236.

    Article  CAS  Google Scholar 

  30. N. Omrani, A. Nezamzadeh-Ejhieh, and M. Alizadeh (2019). Brief study on the kinetic aspect of photodegradation of sulfasalazine aqueous solution by cuprous oxide/cadmium sulfde nanoparticles. Desalin. Water Treat. 162, 290–302.

    Article  CAS  Google Scholar 

  31. R. Sasikala, A. R. Shirole, V. Sudarsan, K. G. Girija, R. Rao, C. Sudakar, and S. R. Bharadwaj (2011). Improved photocatalytic activity of indium doped cadmium sulfide dispersed on zirconia. J. Mater. Chem. 21 (41), 16566–16573.

    Article  CAS  Google Scholar 

  32. Y. Shi, H. Li, L. Wang, S. Wei, and H. Chen (2012). Novel α-Fe2O3/CdS cornlike nanorods with enhanced photocatalytic performance. ACS Appl. Mater. Interfaces 4 (9), 4800–4806.

    Article  CAS  PubMed  Google Scholar 

  33. N. Omrani and A. Nezamzadeh-Ejhieh (2020). A novel quadripartite Cu2O-CdS-BiVO4-WO3 visible-light driven photocatalyst: Brief characterization and study the kinetic of the photodegradation and mineralization of sulfasalazine. J. Photochem. Photobiol. A Chem. 400, 112726–112733.

    Article  CAS  Google Scholar 

  34. M. Ding, N. Yao, C. Wang, and J. Huang (2016). ZnO@CdS core-shell heterostructures: fabrication, enhanced photocatalytic, and photoelectrochemical performance. Nanoscale Res. Lett. 11, 205–212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, M. Atarod An introduction to green nanotechnology, in Interface Science and Technology (Elsevier, 2019) Vol. 28.

  36. S. M. Sajadi, K. Kamal, M. Pirouei, A. M. Sarbast, and A. Jagar (2018). Natural iron ore as a novel substrate for the biosynthesis of bioactive-stable ZnO@CuO@iron ore NCs: a magnetically recyclable and reusable superior nanocatalyst for the degradation of organic dyes, reduction of Cr(VI) and adsorption of crude oil aromatic compounds, including PAHs. RSC Adv. 8, 35557–35570.

    Article  CAS  Google Scholar 

  37. S. R. Long, R. A. Carey, K. M. Crofoot, P. J. Proteau, and T. M. Filtz (2006). Effect of hawthorn (Crataegus oxycantha) crude extract and chromatographic fractions on multiple activities in a culturedcardiomyocyte assay. Phytomedicine 13 (9), 643–650.

    Article  CAS  PubMed  Google Scholar 

  38. M. Saadatian, F. Peshawa, K. Asiaban, A. Karzan, H. Muhammad, H. Determination of biochemical content and some pomological characteristics of 4 Hawthorn species (Crataegus spp.) Grown in Erbil province, Kregion, Iraq. Adv. Environ. Biol. 2014 8, (7), 2465–2468.

  39. J. P. Kang, Y. J. Kim, P. Singh, Y. Huo, V. Soshnikova, J. Markus, S. Ahn, and M. Chokkalingam (2017). Biosynthesis of gold and silver chloride nanoparticles mediated by Crataegus pinnatifda fruit extract: in vitro study of anti-infammatory activities. Artif. Cells Nanomed. Biotechnol. 46, 1530–1540.

    PubMed  Google Scholar 

  40. G. Pan, G. Yu, C. Zhu, and J. Qiao (2012). Optimization of ultrasoundassisted extraction (UAE) of flavonoids compounds (FC) from hawthorn seed (HS). Ultrason. Sonochem. 19, 486–490.

    Article  CAS  PubMed  Google Scholar 

  41. D. Olga, C. Jarosław, and B. Marcin (2020). Hawthorn berries extract for the green synthesis of copper and silver nanoparticles. Chem. Papers 74, 239–252.

    Article  CAS  Google Scholar 

  42. M. Ahmad, A. B. Abdul Aziz, S. Ali Mazari, A. G. Baloch, and S. Nizamuddin (2020). Photocatalytic degradation of methyl orange from wastewater using a newly developed Fe-Cu-Zn-ZSM-5 catalyst. Environ. Sci. Pollut. Res. 27 (4), 1–10.

    Google Scholar 

  43. S. V. Bhat, B. A. Nagasampagi, and M. Sivakumar (2005). Chemistry of natural products. ChemBioChem 6, 1127–1128.

    CAS  Google Scholar 

  44. A. D. Dwivedi and K. Gopal (2010). Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surfaces A Physicochem. Eng. Aspects 369, 27–33.

    Article  CAS  Google Scholar 

  45. M. Sajjadi, M. Nasrollahzadeh, and S. M. Sajadi (2017). Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity. J. Colloid Interface Sci. 497, 1–13.

    Article  CAS  PubMed  Google Scholar 

  46. S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7, 17–28.

    Article  CAS  PubMed  Google Scholar 

  47. Z. Zhang, Y. Ren, L. Han, G. Xie, and B. Zhong (2017). Mixed-solvothermal synthesis of CdS micro/nanostructures with optical and ferromagnetic properties. Physica E 92, 30–35.

    Article  CAS  Google Scholar 

  48. P. G. Partha, A. C. Hanif, and S. M. Vijayanand (2013). Sonochemical synthesis and characterization of manganese ferrite nanoparticles. Ind. Eng. Chem. Res. 52, 17848–17855.

    Article  CAS  Google Scholar 

  49. Q. Meidan, C. Wei, C. Peng, L. Jie, Y. Xingtian, G. Bowen, and Q. Wenxiu (2019). Effects of Zn2+ ion doping on hybrid perovskite crystallization and photovoltaic performance of solar cells. Chem. Phys. Lett. 517, 80–84.

    Google Scholar 

  50. A. Noruozi and A. Nezamzadeh-Ejhieh (2020). Preparation, characterization, and investigation of the catalytic property of α-Fe2O3-ZnO nanoparticles in the photodegradation and mineralization of methylene blue. Chem. Phys. Lett. 752, 137587–137597.

    Article  CAS  Google Scholar 

  51. V. N. Nguyen, D. T. Tran, and M. T. Nguyen (2018). Enhanced photocatalytic degradation of methyl orange using ZnO/graphene oxide nanocomposites. Res. Chem. Intermed. 44, 3081–3095.

    Article  CAS  Google Scholar 

  52. Z. Zhang, X. Zhao, X. Jv, H. Lu, and L. Zhu (2017). A simplified method for synthesis of L-Tyrosine modified magnetite nanoparticles and its application for the removal of organic dyes. J. Chem. Eng. Data 62 (12), 4279–4287.

    Article  CAS  Google Scholar 

  53. N. Pourshirband, A. Nezamzadeh-Ejhieh, and S. N. Mirsattari (2021). The CdS/g-C3N4 nano-photocatalyst: brief characterization and kinetic study of photodegradation and mineralization of methyl orange. Spectrochim. Acta Part A. 248, 119110–119120.

    Article  CAS  Google Scholar 

  54. S. Ghattavi and A. Nezamzadeh-Ejhieh (2020). A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers. Compos. Part B 183, 107712–107728.

    Article  CAS  Google Scholar 

  55. I. Langmuir (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc 40, 1361–1403.

    Article  CAS  Google Scholar 

  56. K. Azad and P. Gajanan (2017). Photodegradation of methyl orange in aqueous solution by the visible light active Co:La:TiO2 nanocomposite. Chem. Sci. J 8, 164–173.

    Google Scholar 

  57. A. M. Díez-Pascual Antibacterial action of nanoparticle loaded nanocomposites based on graphene and its derivatives: a mini-review. Int. J. Mol. Sci. 2020, 21, 3563–3582.

  58. A. Ch, V. Ritesh, and K. Swati (2020). Photocatalytic dye degradation and antimicrobial activities of Pure and Ag-doped ZnO using Cannabis sativa leaf extract. Scientific Reports 10, 7881–7897.

    Article  CAS  Google Scholar 

  59. P. Hajipour, A. Bahrami, A. Eslami, and A. Hosseini-Abari (2020). Chemical bath synthesis of CuO-GO-Ag nanocomposites with enhanced antibacterial properties. J. Alloys Compd. 821, 153456–153463.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the lab facilities and technical support provided by the Beam Gostar Taban laboratory in Tehran, Iran, to carry out this work. In addition, thanks to Dr. Hiwa Omer Ahmad for FTIR (College of Pharmacy, Department of Pharmaceutical Chemistry, Hawler Medical University) and the Faculty of Biology at Soran University for assistance in the field of antibacterial studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roonak Golabiazar.

Ethics declarations

Conflict of interest

There are no conflicts to declare in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golabiazar, R., Qadir, G.S., Faqe, Z.A. et al. Green Biosynthesis of CdS NPs and CdS/Fe3O4 NCs by Hawthorn Plant Extract for Photodegradation of Methyl Orange Dye and Antibacterial Applications. J Clust Sci 33, 1223–1238 (2022). https://doi.org/10.1007/s10876-021-02054-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02054-z

Keywords

Navigation