Skip to main content
Log in

Structural Characterization, Synthesis and Application of Zincite Nanoparticles as Fuel Additive

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Zincite (ZnO) nanoparticles are prepared by adopting reflux assisted co-precipitation method. Prepared product is subjected to different instrumental techniques to investigate its morphology and lattice structure. Rietveld refinements are performed on XRD results and values of various lattice parameters are calculated and structural model of ZnO is predicted. The morphology of the product is analyzed with the help of scanning and transmission electron microscopies (SEM and TEM). The size of prepared nanoparticles is in the range of 80–100 nm where as some larger particles having irregular morphology with size up to 1 μm are also observed in the product. Prepared product is also used as fuel additive and its effect on different fuel parameters is studied. The combustion characteristics (flash and fire point) and physical characteristics (cloud and pour point, kinematic viscosity and specific gravity) of fuel are studied in the presence of 10, 15 and 20 ppm dosage of additive. ZnO is used as nanoadditive for enhancing concrete durability. Concrete pellets are formed with different dosage (0, 0.1, 0.5, 1.5 w/w%) of nanoadditive. Ratio of cement, sand and nanoadditive is kept as 33:66:1 respectively in all concrete samples with constant amount of water. Effect of nanoadditve is studied on different properties of cement such as aging, porosity, compressive strength, specific heat, thermal conductivity and thermal diffusivity. ZnO nanoadditive is found to be effective in modulating both mechanical and thermal properties of concrete samples.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Odzak, D. Kistler, and L. Sigg (2017). Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Environ. Pollut. 226, 1–11.

    Article  CAS  PubMed  Google Scholar 

  2. P. K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, and B. Vaidya (2017). Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov. Today 22, 1825–1834.

    Article  CAS  PubMed  Google Scholar 

  3. M. Xu, W. Zhang, X. Pei, J. Jiang, Z. Cui, and B. P. Binks (2017). CO2/N2 triggered switchable Pickering emulsions stabilized by alumina nanoparticles in combination with a conventional anionic surfactant. RSC Adv. 7, 29742–29751.

    Article  CAS  Google Scholar 

  4. Z. L. Wang (2004). Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16, R829.

    Article  CAS  Google Scholar 

  5. Z. Fan and J. G. Lu (2005). Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 5, 1561–1573.

    Article  CAS  PubMed  Google Scholar 

  6. L. Toporovska, A. Hryzak, B. Turko, V. Rudyk, V. Tsybulskyi, and R. Y. Serkiz (2017). Photocatalytic properties of zinc oxide nanorods grown by different methods. Optical Quant. Electron. 49, 408.

    Article  CAS  Google Scholar 

  7. C.-L. Zhang, J.-J. Li, and S.-Y. Li (2017). Photocatalytic degradation of pefloxacin in water by modified nano-zinc oxide. Mater. Lett. 206, 146–149.

    Article  CAS  Google Scholar 

  8. M. H. Habibi and M. Mardani (2017). Immobilization of Sn–O–Zn coupled oxide nanoparticles on glass surface for photocatalytic degradation of reactive blue: sol–gel preparation using chloride precursors and citric acid as chelating agent. J. Mater. Sci. Mater. Electron. 28, 14026–14032.

    Article  CAS  Google Scholar 

  9. X. Wang, Y. Ding, C. J. Summers, and Z. L. Wang (2004). Large-scale synthesis of six-nanometer-wide ZnO nanobelts. J. Phys. Chem. B 108, 8773–8777.

    Article  CAS  Google Scholar 

  10. A. Janotti and C. G. Van de Walle (2009). Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501–126504.

    Article  CAS  Google Scholar 

  11. H. Mirzaei and M. Darroudi (2017). Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Intl 43, 907–914.

    Article  CAS  Google Scholar 

  12. R. K. Chava and M. Kang (2017). Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J. Alloys Compd. 692, 67–76.

    Article  CAS  Google Scholar 

  13. L. Chupani, E. Zusková, H. Niksirat, A. Panáček, V. Lünsmann, S.-B. Haange, M. von Bergen, and N. Jehmlich (2017). Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). Sci. Total Environ. 579, 1504–1511.

    Article  CAS  PubMed  Google Scholar 

  14. A. Raja, S. Ashokkumar, R. Pavithra Marthandam, J. Jayachandiran, C. P. Khatiwada, K. Kaviyarasu, R. Ganapathi Raman, and M. Swaminathan (2018). Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. Photochem. Photobiol. B 181, 53–58.

    Article  CAS  Google Scholar 

  15. E. Zare, S. Pourseyedi, M. Khatami, and E. Darezereshki (2017). Simple biosynthesis of zinc oxide nanoparticles using nature’s source, and it’s in vitro bio-activity. J Mol Struc 1146, 96–103.

    Article  CAS  Google Scholar 

  16. P. Venkatachalam, N. Priyanka, K. Manikandan, I. Ganeshbabu, P. Indiraarulselvi, N. Geetha, K. Muralikrishna, R. C. Bhattacharya, M. Tiwari, N. Sharma, and S. V. Sahi (2017). Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol. Biochem. 110, 118–127.

    Article  CAS  PubMed  Google Scholar 

  17. C. T. Ng, L. Q. Yong, M. P. Hande, C. N. Ong, L. E. Yu, B. H. Bay, and G. H. Baeg (2017). Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int. J. Nanomed. 12, 1621–1637.

    Article  CAS  Google Scholar 

  18. P. Bhardwaj, N. Goswami, P. Narula, C. K. Jain, and A. Mathur (2018). Zinc oxide nanoparticles (ZnO NP) mediated regulation of bacosides biosynthesis and transcriptional correlation of HMG-CoA reductase gene in suspension culture of Bacopa monnieri. Plant Physiol. Biochem. 130, 148–156.

    Article  CAS  PubMed  Google Scholar 

  19. Z. Sanaeimehr, I. Javadi, and F. Namvar (2018). Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol. 9, 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. J. G. Dale, S. S. Cox, M. E. Vance, L. C. Marr, and M. F. Hochella Jr. (2017). Transformation of cerium oxide nanoparticles from a diesel fuel additive during combustion in a diesel engine. Environ. Sci. Technol. 51, 1973–1980.

    Article  CAS  PubMed  Google Scholar 

  21. P. M. Guerieri, J. B. DeLisio, and M. R. Zachariah (2017). Nanoaluminum/nitrocellulose microparticle additive for burn enhancement of liquid fuels. Combust. Flame 176, 220–228.

    Article  CAS  Google Scholar 

  22. S. Hoseini, G. Najafi, B. Ghobadian, R. Mamat, M. Ebadi, and T. Yusaf (2018). Novel environmentally friendly fuel: the effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel. Renew. Energy 125, 283–294.

    Article  CAS  Google Scholar 

  23. S. Jamil, H. Ahmad, S. R. Khan, and M. R. S. A. Janjua (2018). First synthetic study of cube-like cobalt hydroxystannate nanoparticles as photocatalyst for Drimarene red K-4BL degradation and fuel additive. J. Cluster Sci. 29, 685–696.

    Article  CAS  Google Scholar 

  24. S. Jamil, M. R. S. A. Janjua, and S. R. Khan (2018). Synthesis and structural investigation of polyhedron Co3O4 nanoparticles: catalytic application and as fuel additive. Mater. Chem. Phys. 216, 82–92.

    Article  CAS  Google Scholar 

  25. J. S. Basha and R. Anand (2014). Performance, emission and combustion characteristics of a diesel engine using carbon nanotubes blended jatropha methyl ester emulsions. Alexandr. Eng. J. 53, 259–273.

    Article  Google Scholar 

  26. K. Fangsuwannarak and K. Triratanasirichai (2013). Improvements of palm biodiesel properties by using nano-TiO2 additive, exhaust emission and engine performance. Roman. Rev. Precis. Mech. Optics Mechatron. 43, 111–118.

    Google Scholar 

  27. M. U. Khalid, S. R. Khan, and S. Jamil (2018). Morphologically controlled synthesis of cubes like tin oxide nanoparticles and study of its application as photocatalyst for congo red degradation and as fuel additive. J Inorg Organomet Polym Mater 28, 168–176.

    Article  CAS  Google Scholar 

  28. R. D’Silva, K. G. Binu, and T. Bhat (2015). Performance and emission characteristics of a C.I. engine fuelled with diesel and TiO2 nanoparticles as fuel additive. Mater. Today Proc. 2, 3728–3735.

    Article  CAS  Google Scholar 

  29. C. V. Kumar, A. Murugesan, T. Rajasekaran, and N. Panneerselvam (2017). Experimental investigation on the effects of nano additives on Mahuca indica methyl ester-diesel fuel blends in diesel engine. Asian J. Res. Soc. Sci. Hum. 7, 120–130.

    Google Scholar 

  30. G. Kannan, R. Karvembu, and R. Anand (2011). Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel. Appl. Energy 88, 3694–3703.

    Article  CAS  Google Scholar 

  31. M. Shafii, F. Daneshvar, N. A. Jahani, and K. Mobini (2011). Effect of ferrofluid on the performance and emission patterns of a four-stroke diesel engine. Adv. Mech. Eng. 3, 529049.

    Article  CAS  Google Scholar 

  32. M.-J. Kao, C.-C. Ting, B.-F. Lin, and T.-T. Tsung (2007). Aqueous aluminum nanofluid combustion in diesel fuel. J. Test. Eval. 36, 186–190.

    Google Scholar 

  33. R. A. Yetter, G. A. Risha, and S. F. Son (2009). Metal particle combustion and nanotechnology. Proc. Combust. Inst. 32, 1819–1838.

    Article  CAS  Google Scholar 

  34. A. Farfaletti, C. Astorga, G. Martini, U. Manfredi, A. Mueller, M. Rey, G. De Santi, A. Krasenbrink, and B. R. Larsen (2005). Effect of water/fuel emulsions and a cerium-based combustion improver additive on HD and LD diesel exhaust emissions. Environ. Sci. Technol. 39, 6792–6799.

    Article  CAS  PubMed  Google Scholar 

  35. T. Okuda, J. J. Schauer, M. R. Olson, M. M. Shafer, A. P. Rutter, K. A. Walz, and P. A. Morschauser (2009). Effects of a platinum−cerium bimetallic fuel additive on the chemical composition of diesel engine exhaust particles. Energy Fuels 23, 4974–4980.

    Article  CAS  Google Scholar 

  36. T. Manzur and N. Yazdani (2010). Strength enhancement of cement mortar with carbon nanotubes: early results and potential. Transport. Res. Record 2142, 102–108.

    Article  CAS  Google Scholar 

  37. L. I. Nasibulina, I. V. Anoshkin, S. D. Shandakov, A. G. Nasibulin, A. Cwirzen, P. R. Mudimela, K. Habermehl-Cwirzen, J. E. Malm, T. S. Koltsova, and Y. Tian (2010). Direct synthesis of carbon nanofibers on cement particles. Transport. Res. Record 2142, 96–101.

    Article  CAS  Google Scholar 

  38. F. Sanchez and A. Borwankar (2010). Multi-scale performance of carbon microfiber reinforced cement-based composites exposed to a decalcifying environment. Mater. Sci. Eng. A 527, 3151–3158.

    Article  CAS  Google Scholar 

  39. J. Grove, S. Vanikar, and G. Crawford (2010). Nanotechnology: New tools to address old problems. Transport. Res. Record 2141, 47–51.

    Article  CAS  Google Scholar 

  40. P. Mondal, S. P. Shah, L. D. Marks, and J. J. Gaitero (2010). Comparative study of the effects of microsilica and nanosilica in concrete. Transport. Res. Record 2141, 6–9.

    Article  CAS  Google Scholar 

  41. K. P. Chong and E. J. Garboczi (2002). Smart and designer structural material systems. Progress Struct. Eng. Mater. 4, 417–430.

    Article  Google Scholar 

  42. M.-H. Zhang and J. Islam (2012). Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Construct. Build. Mater. 29, 573–580.

    Article  Google Scholar 

  43. H. Li, M.-H. Zhang, and J.-P. Ou (2007). Flexural fatigue performance of concrete containing nano-particles for pavement. Int. J. Fatigue 29, 1292–1301.

    Article  CAS  Google Scholar 

  44. H. Li, H.-G. Xiao, and J.-P. Ou (2004). A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem. Concret. Res. 34, 435–438.

    Article  CAS  Google Scholar 

  45. Z. Li, H. Wang, S. He, Y. Lu, and M. Wang (2006). Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater. Lett. 60, 356–359.

    Article  CAS  Google Scholar 

  46. W.-Y. Kuo, J.-S. Huang, and C.-H. Lin (2006). Effects of organo-modified montmorillonite on strengths and permeability of cement mortars. Cem. Concret. Res. 36, 886–895.

    Article  CAS  Google Scholar 

  47. S. R. Khan, M. Batool, S. Jamil, S. Bibi, S. Abid, and M. R. S. A. Janjua (2019). Synthesis and characterization of Mg–Zn bimetallic nanoparticles: selective hydrogenation of p-nitrophenol, degradation of reactive carbon black 5 and fuel additive. J. Inorg. Organomet. Polymers Mater. 30, 438–450.

    Article  CAS  Google Scholar 

  48. S. Jamil, M. R. S. A. Janjua, S. R. Khan, and N. Jahan (2017). Synthesis, characterization and catalytic application of polyhedron zinc oxide microparticles. Mater. Res. Exp. 4, 015902–015910.

    Article  CAS  Google Scholar 

  49. S. R. Khan, S. Jamil, M. R. S. A. Janjua, and R. A. Khera (2017). Synthesis of ferric oxyhydroxide nanoparticles and ferric oxide nanorods by reflux assisted coprecipitation method and comparative study of their thermal properties. Mater. Res. Exp. 4, 115019–115025.

    Article  CAS  Google Scholar 

  50. J. B. Ooi, H. M. Ismail, V. Swamy, X. Wang, A. K. Swain, and J. R. Rajanren (2016). Graphite oxide nanoparticle as a diesel fuel additive for cleaner emissions and lower fuel consumption. Energy Fuels 30, 1341–1353.

    CAS  Google Scholar 

  51. V. Sajith, C. Sobhan, and G. Peterson (2010). Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Adv. Mech. Eng. 2, 581407–581417.

    Article  CAS  Google Scholar 

  52. H. Ghaednia, R. L. Jackson, and J. M. Khodadadi (2015). Experimental analysis of stable CuO nanoparticle enhanced lubricants. J. Exp. Nanosci. 10, 1–18.

    Article  CAS  Google Scholar 

  53. V. A. M. Selvan, R. Anand, and M. Udayakumar (2014). Effect of cerium oxide nanoparticles and carbon nanotubes as fuel-borne additives in Diesterol blends on the performance, combustion and emission characteristics of a variable compression ratio engine. Fuel 130, 160–167.

    Article  CAS  Google Scholar 

  54. T. M. Figueira-Duarte and K. Mullen (2011). Pyrene-based materials for organic electronics. Chem. Rev. 111, 7260–7314.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are also highly grateful to the Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan for financial assistance. The authors have also declared no conflict of interest. However, the final write up was accomplished at King Fahd University of petroleum and Minerals (KFUPM), Dhahran, Kingdom Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ramzan Saeed Ashraf Janjua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamil, S., Tariq, T., Khan, S.R. et al. Structural Characterization, Synthesis and Application of Zincite Nanoparticles as Fuel Additive. J Clust Sci 33, 1165–1176 (2022). https://doi.org/10.1007/s10876-021-02047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02047-y

Keywords

Navigation