Preparation of Technetium Labeled-Graphene Quantum Dots and Investigation of Their Bio Distribution

Abstract

The novel radiotracer has been studied with the title of Graphene quantum dots (GQDs) and decorated by the usage of selenium (Se), while surface modification has been carried out in the following through the utilization of Polyethylene glycol (PEG) and labeled with 99mTechnetium (99mTc). Moreover, 99mTc has been eluted from a 99Mo/99mTc producer, and Graphene quantum dots have been synthesized with high photoluminescence (PL) intensity throughout the range of 600 to 900 nm. We have also evaluated the labeling stability percentages of GQDs and 99mTc in double-distilled water and human serum through the application of the Instant Thin Layer Chromatography (ITLC) method in different time intervals; it should be noted that methanol and acetone have been applied as the mobile phase. Radioactivity of 99mTc-GQDs have been injected into nine designated rats through their tail, while the bio distribution of radioactivity was being surveyed through a Gamma counter and had the percent of Injected Dose per gram (%ID/g) calculated for each organ. In addition, the process of capturing static posterior and anterior images by the application of a gamma camera has been done in vivo. In accordance with the observations, there has been a higher GQDs (Se-PEG) distribution throughout the kidneys when compared to the other organs. There is the possibility of exerting these quantum dots for the labeling of kidneys since they can almost completely escape the body within 24 h.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    V. Morigi, A. Tocchio, C. Bellavite Pellegrini, J. H. Sakamoto, M. Arnone, and E. Tasciotti (2012). J. Drug Deliv. 2012, 389485.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    E. Y. Yu, M. Bishop, B. Zheng, R. M. Ferguson, A. P. Khandhar, S. J. Kemp, K. M. Krishnan, P. W. Goodwill, and S. M. Conolly (2017). Nano Lett. 17, 1648–1654.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    A. Ashokan, G. S. Gowd, V. H. Somasundaram, A. Bhupathi, R. Peethambaran, A. Unni, S. Palaniswamy, S. V. Nair, and M. Koyakutty (2013). Biomaterials 34, 7143–7157.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    S. M. Moghimi, A. C. Hunter, and J. C. Murray (2001). Pharmacol. Rev. 53, 283–318.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    S. K. Imam (2005). Cancer Biother. Radiopharm. 20, 163–172.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    D. Kalyane, N. Raval, R. Maheshwari, V. Tambe, K. Kalia, and R. K. Tekade (2019). Mater. Sci. Eng. C 98, 1252–1276.

    CAS  Article  Google Scholar 

  7. 7.

    L. Hasanzadeh, R. K. Oskuee, K. Sadri, E. Nourmohammadi, M. Mohajeri, Z. Mardani, A. Hashemzadeh, and M. Darroudi (2018). Life Sci. 212, 233–240.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    R. Rahmani, M. Gharanfoli, M. Gholamin, M. Darroudi, J. Chamani, and K. Sadri (2019). J. Mol. Struct. 1196, 394–402.

    CAS  Article  Google Scholar 

  9. 9.

    B. L. Faintuch, R. Teodoro, A. Duatti, E. Muramoto, S. Faintuch, and C. J. Smith (2008). Nucl. Med. Biol. 35, 401–411.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    C. L. Santos-Cuevas, G. Ferro-Flores, E. L. Rojas-Calderón, R. García-Becerra, D. Ordaz-Rosado, C. A. de Murphy, and M. Pedraza-López (2011). Nucl. Med. Commun. 32, 303–313.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    D. Nowotnik, Physico-Chemical Concepts in the Preparation of Technetium Radiopharmaceuticals, Textbook of Radiopharmacy: Theory and Practice. (Gordon and Breach, Philadelphia, 1990), pp. 29–49.

    Google Scholar 

  12. 12.

    H. Guo, F. Xie, M. Zhu, Y. Li, Z. Yang, X. Wang, and J. Lu (2011). Bioorg. Med. Chem. Lett. 21, 2025–2029.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    E. Kamelnia, A. Divsalar, M. Darroudi, P. Yaghmaei, and K. Sadri (2019). Ind. Crops Products 139, 111538.

    CAS  Article  Google Scholar 

  14. 14.

    B. Elahi, M. Mirzaee, M. Darroudi, K. Sadri, and R. K. Oskuee (2019). Colloids Surf. B 181, 830–836.

    CAS  Article  Google Scholar 

  15. 15.

    T. Banerjee, A. Singh, R. Sharma, and A. Maitra (2005). Int. J. Pharm. 289, 189–195.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    C.-M. Fu, Y.-F. Wang, Y.-C. Chao, S.-H. Hung, and M.-D. Yang (2004). IEEE Trans. Magnet. 40, 3003–3005.

    CAS  Article  Google Scholar 

  17. 17.

    C. J. Santos, F. Moura Filho, F. L. Campos, C. de Aguiar Ferreira, A. L. B. de Barros, and D. C. F. Soares (2020). J. Radioanal. Nucl. Chem. 323, 51–59.

    CAS  Article  Google Scholar 

  18. 18.

    F. Alexis, E. Pridgen, L. K. Molnar, and O. C. Farokhzad (2008). Mol. Pharm. 5, 505–515.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    J. P. M. Almeida, A. L. Chen, A. Foster, and R. Drezek (2011). Nanomedicine 6, 815–835.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway (2010). Materials 3, 2260–2345.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  21. 21.

    X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. Wu, S. Gambhir, and S. Weiss (2005). Science 307, 538–544.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    M. A. Walling, J. A. Novak, and J. R. Shepard (2009). Int. J. Mol. Sci. 10, 441–491.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    J. Li and J.-J. Zhu (2013). Analyst 138, 2506–2515.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    S. Mahesh, C. L. Lekshmi, and K. D. Renuka (2017). New J. Chem. 41, 8706–8710.

    CAS  Article  Google Scholar 

  25. 25.

    H. Sun, H. Ji, E. Ju, Y. Guan, J. Ren, and X. Qu (2015). Chemistry 21, 3791–3797.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    X. Ran, H. Sun, F. Pu, J. Ren, and X. Qu (2013). Chem. Commun. 49, 1079–1081.

    CAS  Article  Google Scholar 

  27. 27.

    Y. Zhu, G. Wang, H. Jiang, L. Chen, and X. Zhang (2015). Chem. Commun. 51, 948–951.

    CAS  Article  Google Scholar 

  28. 28.

    P. Sudhagar, I. Herraiz-Cardona, H. Park, T. Song, S. H. Noh, S. Gimenez, I. M. Sero, F. Fabregat-Santiago, J. Bisquert, and C. Terashima (2016). Electrochim. Acta 187, 249–255.

    CAS  Article  Google Scholar 

  29. 29.

    M. Simeonova, R. Velichkova, G. Ivanova, V. Enchev, and I. Abrahams (2003). Int. J. Pharm. 263, 133–140.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    E. Fournier, C. Passirani, N. Colin, P. Breton, S. Sagodira, and J.-P. Benoit (2004). Eur. J. Pharm. Biopharm. 57, 189–197.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Y. Zheng, W. Yang, C. Wang, J. Hu, S. Fu, L. Dong, L. Wu, and X. Shen (2007). Eur. J. Pharm. Biopharm. 67, 621–631.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    S. Stolnik, M. Garnett, M. Davies, L. Illum, M. Bousta, M. Vert, and S. Davis (1995). Colloids Surf. A 97, 235–245.

    CAS  Article  Google Scholar 

  33. 33.

    J. Cui, R. De Rose, K. Alt, S. Alcantara, B. M. Paterson, K. Liang, M. Hu, J. J. Richardson, Y. Yan, and C. M. Jeffery (2015). ACS Nano 9, 1571–1580.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    P. Rafiei and A. Haddadi (2017). Int. J. Nanomed. 12, 935.

    CAS  Article  Google Scholar 

  35. 35.

    K. Habiba, J. Encarnacion-Rosado, K. Garcia-Pabon, J. C. Villalobos-Santos, V. I. Makarov, J. A. Avalos, B. R. Weiner, and G. Morell (2016). Int. J. Nanomed. 11, 107.

    CAS  Article  Google Scholar 

  36. 36.

    J. P. Naik, P. Sutradhar, and M. Saha (2017). J. Nanostruct. Chem> 7, 85–89.

    CAS  Article  Google Scholar 

  37. 37.

    Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, and G. Chen (2012). Carbon 50, 4738–4743.

    CAS  Article  Google Scholar 

  38. 38.

    S. Bansal, J. Singh, U. Kumari, I. P. Kaur, R. P. Barnwal, R. Kumar, S. Singh, G. Singh, and M. Chatterjee (2019). Int. J. Nanomed. 14, 809.

    Article  Google Scholar 

  39. 39.

    J. Encarnación-Rosado, K. Habiba, K. García-Pabón, B. R. Weiner, and G. Morell, Improving cytotoxicity against cancer cells by chemo-photodynamics combined modalities using silver/graphene quantum dots/doxorubicin nanoconjugates, AACR, 2016.

  40. 40.

    V. I. C. Tan, A. Hinchman, R. Williams, P. A. Tran, and K. Fox (2018). Biointerphases 13, 06D301.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    J. K. Wrobel, R. Power, and M. Toborek (2016). IUBMB Life 68, 97–105.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    I. V. Vrček, Selenium Nanoparticles: Biomedical Applications, Selenium. (Springer, Berlin, 2018), pp. 393–412.

    Book  Google Scholar 

  43. 43.

    M. Nafiujjaman, V. Revuri, H.-K. Park, I. K. Kwon, K.-J. Cho, and Y.-K. Lee (2016). Chem. Lett. 45, 997–999.

    CAS  Article  Google Scholar 

  44. 44.

    S. P. Jovanović, Z. Syrgiannis, Z. M. Marković, A. Bonasera, D. P. Kepić, M. D. Budimir, D. A. D. Milivojevic, V.D. Spasojevic, and M.D. Dramićanin, V.B. Pavlović, (2015). ACS Appl. Mater. Interfaces 7, 25865–25874.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    E. Kamelnia, A. Divsalar, M. Darroudi, P. Yaghmaei, and K. Sadri (2020). Int. J. Biol. Macromol. 146, 299–310.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    K. Sadri, M. Gandomkar, M. Babaei, R. Najafi, S. Zakavi, and S. SadatEbrahimi (2009). J. Label. Compd. Radiopharm 52, 289–294.

    CAS  Article  Google Scholar 

  47. 47.

    S. Kumar, A. K. Ojha, B. Ahmed, A. Kumar, J. Das, and A. Materny (2017). Mater. Today Commun. 11, 76–86.

    CAS  Article  Google Scholar 

  48. 48.

    S. Yu, Y.-Q. Zhong, B.-Q. Yu, S.-Y. Cai, L.-Z. Wu, and Y. Zhou (2016). Phys. Chem. Chem. Phys. 18, 20338–20344.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    D. Du, K. Wang, Y. Wen, Y. Li, and Y. Y. Li (2016). ACS Appl. Mater. Interfaces 8, 3287–3294.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    X. Wu, F. Tian, W. Wang, J. Chen, M. Wu, and J. X. Zhao (2013). J. Mater. Chem. C 1, 4676–4684.

    CAS  Article  Google Scholar 

  51. 51.

    S. Ahirwar, S. Mallick, and D. Bahadur (2017). ACS Omega 2, 8343–8353.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    G. Gedda, S. Pandey, Y.-C. Lin, and H.-F. Wu (2015). Green Chem. 17, 3276–3280.

    CAS  Article  Google Scholar 

  53. 53.

    N. M. Saied, N. Mejri, R. El Aissi, E. Benoist, and M. Saidi (2015). Eur. J. Med. Chem. 97, 280–288.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    S. Vallabhajosula, R. P. Killeen, and J. R. Osborne, Altered Biodistribution of Radiopharmaceuticals: Role of Radiochemical/Pharmaceutical Purity, Physiological, and Pharmacologic Factors. Seminars in Nuclear Medicine. (Elsevier, Amsterdam, 2010), pp. 220–241.

    Google Scholar 

  55. 55.

    K. Yang, C. Wang, C. Liu, S. Ding, F. Tian, and F. Li (2019). J. Mater. Sci. 54, 3383–3391.

    CAS  Article  Google Scholar 

  56. 56.

    S. M. Moghimi, A. Hunter, and T. Andresen (2012). Ann. Rev. Pharmacol. Toxicol. 52, 481–503.

    CAS  Article  Google Scholar 

  57. 57.

    N. Bertrand and J.-C. Leroux (2012). J. Control. Release 161, 152–163.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the research council of Kashan University and Mashhad University of Medical Sciences for providing the financial support of this work (Grant No. 785216).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Darroudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roeinfard, M., Zahedifar, M., Darroudi, M. et al. Preparation of Technetium Labeled-Graphene Quantum Dots and Investigation of Their Bio Distribution. J Clust Sci (2021). https://doi.org/10.1007/s10876-021-02033-4

Download citation

Keywords

  • Graphene quantum dots
  • Technetium
  • Biodistribution
  • Nano-based radiopharmaceuticals