Synthesis, Characterization and Toxicity Assessment of the Novel Non covalent Functionalized Multi-walled Carbon Nanotubes with Glycyrrhizin, Curcumin and Rutin

Abstract

Carbon nanotubes (CNTs) have emerged as a new group of novel multifunctional nanoparticles in biomedicine and can be classified into single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). In the present work, a simple and efficient method was introduced for non-covalent functionalization of CNTs through the incorporation of phytochemicals of Curcumin (CUR), Glycyrrhizin (GLY) and Rutin (RUT). Different functionalization of CNTs were employed and the obtained nanoparticles were characterized by TEM, EDX, size and, zeta analyzer. Furthermore cell toxicity studies were done on A549 cell line with MTT assay. The obtained results showed that non-covalent functionalization with CUR, GLY or RUT led to the stable suspension of CNTs in aqueous media comparable to the surfactant Tween 80 as the effective surfactant that revealed visually and by TEM images. Upon surface functionalization, an increase in the size and net zeta potentials, indicates surface functionalization of CNTs. Cytotoxicity data showed that functionalization with these phytochemicals can increase the IC 50 value of CNTs from 301 µg/mL to a maximum of 4088 µg/mL in RUT functionalized CNTs. Overall the data showed that CNTs can be functionalized through this feasible method and could be introduced as interesting less toxic drug delivery system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, and K.-H. Kim (2017). Chem. Soc. Rev. 46, 158–196.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    B. Hosnedlova, M. Kepinska, C. Fernandez, Q. Peng, B. Ruttkay-Nedecky, H. Milnerowicz, and R. Kizek (2019). Chem. Record 19, 502–522.

    CAS  Article  Google Scholar 

  3. 3.

    M. Mohajeri, B. Behnam, and A. Sahebkar (2019). J. Cell. Physiol. 234, 298–319.

    CAS  Article  Google Scholar 

  4. 4.

    C. Caoduro, E. Hervouet, C. Girard-Thernier, T. Gharbi, H. Boulahdour, R. Delage-Mourroux, and M. Pudlo (2017). Acta Biomater. 49, 36–44.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    M. Rezaee, B. Behnam, M. Banach, and A. Sahebkar (2018). Biotechnol. Adv. 36, 2232–2247.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    M. Rezayi, P. Mahmoodi, H. Langari, B. Behnam, A. Sahebkar (2020). Curr. Med. Chem. 27(40), 6849–6863.

  7. 7.

    Y. Zhou, Y. Fang, and R. P. Ramasamy (2019). Sensors 19, 392.

    Article  CAS  Google Scholar 

  8. 8.

    L. Orcin-Chaix, G. Trippé-Allard, C. Voisin, H. Okuno, V. Derycke, J.-S. Lauret, and S. Campidelli (2018). J. Mater. Chem. C 6, 4786–4792.

    CAS  Article  Google Scholar 

  9. 9.

    S. Mallakpour and S. Soltanian (2016). RSC Adv. 6, 109916–109935.

    CAS  Article  Google Scholar 

  10. 10.

    G. C. Padovani, R. Petry, C. A. Holanda, F. A. Sousa, V. M. Saboia, C. A. Silva, A. R. Paschoal, A. G. SouzaFilho, and A. J. Paula (2015). J. Phys. Chem. C 119, 18741–18752.

    CAS  Article  Google Scholar 

  11. 11.

    A. H. Nia, B. Behnam, S. Taghavi, F. Oroojalian, H. Eshghi, W. T. Shier, K. Abnous, and M. Ramezani (2017). MedChemComm 8, 364–375.

    Article  CAS  Google Scholar 

  12. 12.

    N. M. Bardhan (2017). J. Mater. Res. 32, 107–127.

    CAS  Article  Google Scholar 

  13. 13.

    Y. Liu, D. C. Wu, W. D. Zhang, X. Jiang, C. B. He, T. S. Chung, S. H. Goh, and K. W. Leong (2005). Angew. Chem. Int. Ed. 44, 4782–4785.

    CAS  Article  Google Scholar 

  14. 14.

    N. Tripathi, V. Pavelyev, and S. Islam (2017). Appl. Nanosci. 7, 557–566.

    CAS  Article  Google Scholar 

  15. 15.

    G. Umbuzeiro, V. Coluci, J. Honorio, R. Giro, D. Morales, A. Lage, J. Mazzei, I. Felzenszwalb, A. Souza Filho, and D. Stefani (2011). TrAC Trends Anal. Chem. 30, 437–446.

    CAS  Article  Google Scholar 

  16. 16.

    C. Buzea, I. I. Pacheco, and K. Robbie (2007). Biointerphases 2, MR17–MR71.

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    H. Hatcher, R. Planalp, J. Cho, F. Torti, and S. Torti (2008). Cell. Mol. Life Sci. 65, 1631–1652.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    K. R. Kahkhaie, A. Mirhosseini, A. Aliabadi, A. Mohammadi, S. M. Haftcheshmeh, T. Sathyapalan, and A. Sahebkar (2019). Inflammopharmacology 27 (5), 901.

    PubMed  Article  Google Scholar 

  19. 19.

    M. Saberi-Karimian, M. Keshvari, M. Ghayour-Mobarhan, L. Salehizadeh, S. Rahmani, B. Behnam, T. Jamialahmadi, S. Asgary, and A. Sahebkar (2020). Complement. Ther. Med. 49, 102322.

    PubMed  Article  Google Scholar 

  20. 20.

    M. Mohajeri, B. Behnam, A. F. Cicero, and A. Sahebkar (2018). J. Cell. Physiol. 233, 3552–3577.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    L. S. Chua (2013). J. Ethnopharmacol. 150, 805–817.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    A. Ganeshpurkar and A. K. Saluja (2017). Saudi Pharm. J. 25, 149–164.

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    C. S. Graebin, H. Verli, and J. A. Guimarães (2010). J. Brazil. Chem. Soc. 21, 1595–1615.

    CAS  Article  Google Scholar 

  24. 24.

    B. Behnam, W. T. Shier, A. H. Nia, K. Abnous, and M. Ramezani (2013). Int. J. Pharm. 454, 204–215.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    R. Rani, N. Dilbaghi, D. Dhingra, and S. Kumar (2015). Int. J. Biol. Macromol. 78, 173–179.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    M. Ohadi, G. Dehghannoudeh, H. Forootanfar, M. Shakibaie, and M. Rajaee (2018). Int. J. Biol. Macromol 112, 712–719.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    M. Ohadi, H. Forootanfar, G. Dehghannoudeh, T. Eslaminejad, A. Ameri, M. Shakibaie, and M. Adeli-Sardou (2020). Microb. Pathog. 138, 103806.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    R. Mohammadinejad, A. Dehshahri, H. Sassan, B. Behnam, M. Ashrafizadeh, A. S. Gholami, A. Pardakhty, and A. Mandegary (2020). Miner. Biotecnol. 32, 106–113.

    Google Scholar 

  29. 29.

    B. Behnam, M. Rezazadehkermani, S. Ahmadzadeh, A. Mokhtarzadeh, S. N. Nematollahi-Mahani, and A. Pardakhty (2018). Artif. Cells Nanomed. Biotechnol. 46, 118–125.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    H. Kaur, S. Yadav, M. Ahuja, and N. Dilbaghi (2012). Carbohydr. Polym. 90, 1543–1549.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    C. Mohanty and S. K. Sahoo (2010). Biomaterials 31, 6597–6611.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    H. Sabahi, M. Khorami, A. H. Rezayan, Y. Jafari, and M. H. Karami (2018). Colloids Surf. A 538, 834–840.

    CAS  Article  Google Scholar 

  33. 33.

    M. M. Yallapu, B. K. Gupta, M. Jaggi, and S. C. Chauhan (2010). J. Colloid Interface Sci. 351, 19–29.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Z. Hooresfand, S. Ghanbarzadeh, and H. Hamishehkar (2015). Pharm. Sci. 21, 145–151.

    Article  Google Scholar 

  35. 35.

    H. Zeng, Y. Wang, J. Kong, C. Nie, and Y. Yuan (2010). Talanta 83, 582–590.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    S. Honary and F. Zahir (2013). Tropical J. Pharm. Res. 12, 265–273.

    Google Scholar 

  37. 37.

    T. Coccini, E. Roda, D. Sarigiannis, P. Mustarelli, E. Quartarone, A. Profumo, and L. Manzo (2010). Toxicology 269, 41–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    A. Nègre-Salvayre and R. Salvayre (1992). Free Radical Biol. Med. 12, 101–106.

    Article  Google Scholar 

  39. 39.

    C. Nichita and I. Stamatin (2013). Digest J. Nanomater. Biostruct. DJNB 8 (1), 13.

    Google Scholar 

  40. 40.

    W. M. Weber, L. A. Hunsaker, S. F. Abcouwer, L. M. Deck, and D. L. Vander (2005). Jagt Bioorganic Med. Chem. 13, 3811–3820.

    CAS  Article  Google Scholar 

  41. 41.

    S. Hatamie, O. Akhavan, S. K. Sadrnezhaad, M. M. Ahadian, M. M. Shirolkar, and H. Q. Wang (2015). Mater. Sci. Eng. C 55, 482–489.

    CAS  Article  Google Scholar 

  42. 42.

    H. Li, N. Zhang, Y. Hao, Y. Wang, S. Jia, H. Zhang, Y. Zhang, and Z. Zhang (2014). Drug Deliv. 21, 379–387.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    X. Su, L. Wu, M. Hu, W. Dong, M. Xu, and P. Zhang (2017). Biomed. Pharmacother. 95, 670–678.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    P. K. Chopdey, R. K. Tekade, N. K. Mehra, N. Mody, and N. K. Jain (2015). J. Nanosci. Nanotechnol. 15, 1088–1100.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    H. Ahmadi, M. Ramezani, R. Yazdian-Robati, B. Behnam, K. R. Azarkhiavi, A. H. Nia, A. Mokhtarzadeh, M. M. Riahi, B. M. Razavi, and K. Abnous (2017). Chem.-Biol. Interact. 275, 196–209.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    B. Arechabala, C. Coiffard, P. Rivalland, L. Coiffard, and Y. D. Roeck-Holtzhauer (1999). J. Appl. Toxicol. 19, 163–165.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    S. Lanone, P. Andujar, A. Kermanizadeh, and J. Boczkowski (2013). Adv. Drug Deliv. Rev. 65, 2063–2069.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    E. Mohammadi, M. Zeinali, M. Mohammadi-Sardoo, M. Iranpour, B. Behnam, and A. Mandegary (2020). Hum Exp Toxicol. 39(9), 1147–1167.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Kerman University of Medical Sciences, Kerman, Iran (grant numbers 940594 and 98000208). This work was the report of the Pharm D thesis of Peyman Rezaei. The authors also gratefully acknowledge Dr. Amirhossein Sahebkar for the kind donation of Curcumin and his scientific supports.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Behzad Behnam or Mehdi Ansari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ohadi, M., Rezaei, P., Mehrabani, M. et al. Synthesis, Characterization and Toxicity Assessment of the Novel Non covalent Functionalized Multi-walled Carbon Nanotubes with Glycyrrhizin, Curcumin and Rutin. J Clust Sci (2021). https://doi.org/10.1007/s10876-021-02026-3

Download citation

Keywords

  • Non-covalent functionalization
  • Curcumin
  • Glycyrrhizin
  • Rutin
  • Cytotoxicity