Skip to main content
Log in

The AuCu Phase Diagram at the Nano Scale: A Molecular Dynamics Approach

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

While phase diagrams for metal nanoalloys are important to know the conditions at which a nanoparticle keeps a particular shape and kind of surface, experiments to build phase diagrams at the nanoscale are difficult to implement; a posible alternative is the use of atomistic simulations. In this work, a set of molecular dynamics simulations is implemented to build the phase diagram of icosahedral, cuboctahedral, and decahedral AuCu nanoparticles of 2 to 4 nm in size, with several relative concentrations of the metals, using the quantum-corrected version of the Sutton and Chen interaction model. In the obtained phase diagrams, the congruent melting point shifts towards high concentrations of copper in accordance with previous theoretical results, and the local density mapping and bond-order analysis as function of temperature show that for the largest particles, partial premelting of the surface coexists with a pseudo-crystalline region that shrinks as the temperature is incremented, followed by the nucleation of a melted region in the inner volume of the particle that grows until the particle melts as a whole. After melting, it is found that gold has a tendency to migrate to the surface, but the alloy remains in the whole volume of the nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ackland, G.J., Jones, A.P.: Applications of local crystal structure measures in experiment and simulation. Physical Review B 73(5), 4655–7 (2006).

    Article  Google Scholar 

  2. Aguado, A., Jarrold, M.F.: Melting and Freezing of Metal Clusters. Annual Review of Physical Chemistry 62(1), 151–172 (2011).

    Article  CAS  Google Scholar 

  3. Alarifi, H.A., Atis, M., Ouml zdo gbreve an, C., Hu, A., Yavuz, M., Zhou, Y.: Molecular Dynamics Simulation of Sintering and Surface Premelting of Silver Nanoparticles. Materials Transactions 54(6), 884–889 (2013)

  4. An, K., Somorjai, G.A.: Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis. ChemCatChem 4(10), 1512–1524 (2012).

    Article  CAS  Google Scholar 

  5. Bajaj, S., Haverty, M.G., Arróyave, R., Goddard III FRSC, W.A., Shankar, S.: Phase stability in nanoscale material systems: extension from bulk phase diagrams. Nanoscale 7(21), 9868–9877 (2015)

  6. Baker, H., others: ASM Handbook: Alloy Phase Diagrams, Vol. 3, vol. 3. ASM International, Metals Park, OH, USA (1992)

  7. Çagin, T., Kimura, Y., Qi, Y., Li, H., Ikeda, H., Johnsonb, W.L., Goddard, W.A.: Calculation of Mechanical, Thermodynamic and Transport Properties of Metallic Glass Formers. MRS Proceedings 554, 43 (1998).

    Article  Google Scholar 

  8. Chakravarty, C., Debenedetti, P.G., Stillinger, F.H.: Lindemann measures for the solid-liquid phase transition. The Journal of Chemical Physics 126(20), 204508–10 (2007).

    Article  Google Scholar 

  9. Chernyshev, A.P.: Melting of surface layers of nanoparticles: Landau model. Materials Chemistry and Physics 112(1), 226–229 (2008).

    Article  CAS  Google Scholar 

  10. Chushak, Y., Bartell, L.: Molecular dynamics simulations of the freezing of gold nanoparticles. European Physical Journal D 16, 43–46 (2001).

    Article  CAS  Google Scholar 

  11. Cleveland, C., Luedtke, W., Landman, U.: Melting of gold clusters. Physical Review B 60(7), 5065–5077 (1999).

    Article  CAS  Google Scholar 

  12. Cuenya, B.R.: Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12), 3127–3150 (2010).

    Article  CAS  Google Scholar 

  13. Cui, M., Lu, H., Jiang, H., Cao, Z., Meng, X.: Phase Diagram of Continuous Binary Nanoalloys: Size, Shape, and Segregation Effects. Nature Publishing Group pp. 1–10 (2017)

  14. Dai, C., Saidi, P., Song, H., Yao, Z., Daymond, M.R., Hoyt, J.J.: A test of a phenomenological model of size dependent melting in Au nanoparticles. Acta Materialia 136, 11–20 (2017).

    Article  CAS  Google Scholar 

  15. Durán-Álvarez, J.C., Avella, E., Ramírez-Zamora, R.M., Zanella, R.: Photocatalytic degradation of ciprofloxacin using mono- (Au, Ag and Cu) and bi- (Au–Ag and Au–Cu) metallic nanoparticles supported on TiO2 under UV-C and simulated sunlight. Catalysis Today 266, 175–187 (2016).

    Article  Google Scholar 

  16. Gong, J.: Structure and Surface Chemistry of Gold-Based Model Catalysts. Chemical Reviews 112(5), 2987–3054 (2012).

    Article  CAS  Google Scholar 

  17. Guisbiers, G., Mejía-Rosales, S., Khanal, S., Ruiz-Zepeda, F., Whetten, R.L., José-Yacamán, M.: Gold-Copper Nano-Alloy, “Tumbaga”, in the Era of Nano: Phase Diagram and Segregation. Nano Letters 14(11), 6718–6726 (2014).

  18. Hill, T.L.: Perspective: Nanothermodynamics. Nano Letters 1(3), 111–112 (2001).

    Article  CAS  Google Scholar 

  19. Honeycutt, J.D., Andersen, H.C.: Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. The Journal of Physical Chemistry 91(19), 4950–4963 (1987).

    Article  CAS  Google Scholar 

  20. Joshi, A.M., Tucker, M.H., Delgass, W.N., Thomson, K.T.: CO adsorption on pure and binary-alloy gold clusters: A quantum chemical study. The Journal of Chemical Physics 125(19), 194707–12 (2006).

    Article  Google Scholar 

  21. Lindemann, F.A.: Uber die berechnung molekularer Eigenfrequenzen. Physikalische Zeitschrift 11, 609–612 (1910).

    CAS  Google Scholar 

  22. Luo, S.N., Ahrens, T.J., Çağın, T., Strachan, A., Goddard, W.A., Swift, D.C.: Maximum superheating and undercooling: Systematics, molecular dynamics simulations, and dynamic experiments. Physical Review B 68(13), 75–11 (2003).

    Article  Google Scholar 

  23. Martin, T.P., Naher, U., Schaber, H., Zimmermann, U.: Evidence for a size-dependent melting of sodium clusters. The Journal of Chemical Physics 100(3), 2322–2324 (1994).

    Article  CAS  Google Scholar 

  24. Mejía-Rosales, S.J., Fernández-Navarro, C., Pérez-Tijerina, E., Montejano-Carrizales, J.M., José-Yacamán, M.: Two-Stage Melting of Au-Pd Nanoparticles. The Journal of Physical Chemistry B 110(26), 12884–12889 (2006).

    Article  Google Scholar 

  25. Montejano-Carrizales, J.M., Iñiguez, M.P., Alonso, J.A., López, M.J.: Theoretical study of icosahedral Ni clusters within the embedded-atom method. Physical Review B 54(8), 5961–5969 (1996).

    Article  CAS  Google Scholar 

  26. Monzó, J., Malewski, Y., Kortlever, R., Vidal-Iglesias, F.J., Solla-Gullón, J., Koper, M.T.M., Rodriguez, P.: Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction. Journal of Materials Chemistry A: Materials for energy and sustainability 3(47), 23690–23698 (2015).

    Article  Google Scholar 

  27. Rafii-Tabar, H., Sutton, A.P.: Long-range Finnis-Sinclair potentials for f.c.c. metallic alloys. Philosophical Magazine Letters 63(4), 217–224 (1991)

  28. Rodríguez-Proenza, C., Palomares-Báez, J., Chávez-Rojo, M., García-Ruiz, A., Azanza-Ricardo, C., Santoveña-Uribe, A., Luna-Bárcenas, G., Rodríguez-López, J., Esparza, R.: Atomic Surface Segregation and Structural Characterization of PdPt Bimetallic Nanoparticles. Materials 11(10), 1882–15 (2018).

    Article  Google Scholar 

  29. Shibuta, Y., Suzuki, T.: Melting and solidification point of fcc-metal nanoparticles with respect to particle size: A molecular dynamics study. Chemical Physics Letters 498(4–6), 323–327 (2010).

    Article  CAS  Google Scholar 

  30. Skriver, H.L., Rosengaard, N.M.: Surface energy and work function of elemental metals. Physical Review B 46(11), 7157–7168 (1992).

    Article  CAS  Google Scholar 

  31. Sutton, A.P., Chen, J.: Long-range finnis-sinclair potentials. Philosophical Magazine Letters 61(3), 139–146 (1990).

    Article  Google Scholar 

  32. Taherkhani, F., Akbarzadeh, H., Feyzi, M., Rafiee, H.R.: Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms. Journal of Nanoparticle Research 17(1), 16–10 (2015).

    Article  Google Scholar 

  33. Todorov, I.T., Smith, W., Trachenko, K., Dove, M.T.: DL\_POLY\_3: new dimensions in molecular dynamics simulations via massive parallelism. Journal of Materials Chemistry 16(20), 1911–8 (2006).

    Article  CAS  Google Scholar 

  34. Tran, R., Xu, Z., Radhakrishnan, B., Winston, D., data, W.S.S., 2016: Surface energies of elemental crystals. nature.com/scientificdata 3(1), 238 (2016)

  35. Vitos, L., Ruban, A.V., Skriver, H.L., Kollar, J.: The surface energy of metals. Surface Science 411(1–2), 186–202 (1998).

    Article  CAS  Google Scholar 

  36. Wen, Y.H., Zhang, Y., Zheng, J.C., Zhu, Z.Z., Sun, S.G.: Orientation-Dependent Structural Transition and Melting of Au Nanowires. The Journal of Physical Chemistry C 113(48), 20611–20617 (2009).

    Article  CAS  Google Scholar 

  37. Yang, C.C., Mai, Y.W.: Thermodynamics at the nanoscale: A new approach to the investigation of unique physicochemical properties of nanomaterials. Materials Science and Engineering: R: Reports 79, 1–40 (2014).

    Article  Google Scholar 

  38. Yin, J., Shan, S., Yang, L., Mott, D., Malis, O., Petkov, V., Cai, F., Shan Ng, M., Luo, J., Chen, B.H., Engelhard, M., Zhong, C.J.: Gold-Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites. Chemistry of Materials 24(24), 4662–4674 (2012).

    Article  CAS  Google Scholar 

  39. Zhang, L., Kim, H.Y., Henkelman, G.: CO Oxidation at the Au–Cu Interface of Bimetallic Nanoclusters Supported on CeO 2(111). The Journal of Physical Chemistry Letters 4(17), 2943–2947 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the support from UANL through the PAICYT grants CE335-15 and CE878-19, and from the Laboratorio Nacional de Supercómputo del Sureste de México for computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Mejía-Rosales.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Muñoz, H.R., Mejía-Rosales, S. The AuCu Phase Diagram at the Nano Scale: A Molecular Dynamics Approach. J Clust Sci 33, 785–793 (2022). https://doi.org/10.1007/s10876-021-02015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02015-6

Keywords

Navigation