Influence of Morphology and Textural Characteristics of γ-Al2O3 Nanostructures on the Potentiation of Doxorubicin


The combined application of chemotherapeutic agents and nanoparticles is a universal strategy in malignant tumors treatment. In the present study influence of γ-Al2O3 nanostructures morphology on its ability to potentiate doxorubicin was evaluated. Combined application of nanostructures and doxorubicin was evaluated using Neuro-2a, Hela, MCF-7 cell lines. It was found that regardless of γ-Al2O3 nanostructures morphology, its combined application with doxorubicin lead to synergetic effect. Moreover, the synergetic effect is observed at concentrations lower than IC50 values for monotherapy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    M. Kashif, C. Andersson, S. Hassan, H. Karlsson, W. Senkowski, M. Fryknäs, and M. G. Gustafsson (2015). Sci. Rep. 5, 14118.

    CAS  Article  Google Scholar 

  2. 2.

    R. X. Zhang, et al. (2016). J. Control. Release 240, 489.

    CAS  Article  Google Scholar 

  3. 3.

    Z. C. Soe, et al. (2019). Pharmaceutics 11, (2), 63.

    CAS  Article  Google Scholar 

  4. 4.

    R. S. Fernandes, et al. (2018). Biomed. Pharmacother. 103, 1348.

    CAS  Article  Google Scholar 

  5. 5.

    S. Eetezadi, S. N. Ekdawi, and C. Allen (2015). Adv. Drug Deliv. Rev. 91, 7.

    CAS  Article  Google Scholar 

  6. 6.

    X. Liang, J. Gao, L. Jiang, J. Luo, L. Jing, X. Li, Y. Jin, and Z. Dai (2015). ACS Nano 9, 1280.

    CAS  Article  Google Scholar 

  7. 7.

    A. E. Czapar, Y.-R. Zheng, I. A. Riddell, S. Shukla, S. G. Awuah, S. J. Lippard, and N. F. Steinmetz (2016). ACS Nano 10, 4119.

    CAS  Article  Google Scholar 

  8. 8.

    L. He, H. Lai, and T. Chen (2015). Biomaterials 51, 30.

    CAS  Article  Google Scholar 

  9. 9.

    M. Orecchioni, R. Cabizza, A. Bianco, and L. G. Delogu (2015). Theranostics 5, 710.

    CAS  Article  Google Scholar 

  10. 10.

    J. Li, Z. Lyv, Y. Li, H. Liu, J. Wang, W. Zhan, H. Chen, H. Chen, and X. A. Li (2015). Biomaterials 51, 12.

    CAS  Article  Google Scholar 

  11. 11.

    H. Meng, M. Wang, H. Liu, X. Liu, A. Situ, B. Wu, Z. Ji, C. H. Chang, and A. E. Nel (2015). ACS Nano 9, 3540.

    CAS  Article  Google Scholar 

  12. 12.

    C. DelaTorre, I. Casanova, G. Acosta, C. Coll, M. J. Moreno, F. Albericio, E. Aznar, R. Mangues, M. Royo, F. Sancenón, and R. Martinez-Manez (2015). Adv. Funct. Mater. 25, 687.

    CAS  Article  Google Scholar 

  13. 13.

    Y. Yuan, Z. Ding, J. Qian, J. Zhang, J. Xu, X. Dong, T. Han, S. Ge, Y. Luo, Y. Wang, K. Zhong, and G. Liang (2016). Nano Lett. 16, 2686.

    CAS  Article  Google Scholar 

  14. 14.

    A. Angelopoulou, et al. (2019). ACS Omega 4, (26), 22214.

    CAS  Article  Google Scholar 

  15. 15.

    M. Rui, et al. (2017). Mol. Pharm. 14, (1), 107.

    CAS  Article  Google Scholar 

  16. 16.

    W. Wang, et al. (2019). Mater. Horiz. 6, (8), 1538.

    CAS  Article  Google Scholar 

  17. 17.

    M. I. Lerner, et al. (2018). Nanoletters 18, (9), 5401.

    CAS  Article  Google Scholar 

  18. 18.

    S. O. Kazantsev, et al. (2018). Mater. Res. Bull. 104, 97.

    CAS  Article  Google Scholar 

  19. 19.

    B. S. Weakley, Beginner’s Handbook in Biological Electron Microscopy, 278 (1972).

  20. 20.

    A. H. Undeen, and J. Vavra. Research methods for entomopathogenic protozoa. In: Manual of Techniques in Insect Pathology, ed. by L. Lacy (Academic Press, San Diego, 1997), pp. 117–149.

    Google Scholar 

  21. 21.

    E. S. Reynolds (1963). J. Cell Biol. 17, 208.

    CAS  Article  Google Scholar 

  22. 22.

    P. Zhang, B. B. Li, J. W. Du, and Y. X. Wang (2017). Colloids Surf. 157, 18.

    CAS  Article  Google Scholar 

  23. 23.

    A. Banerjee, J. P. Qi, R. Gogoi, J. Wong, and S. Mitragotri (2016).J. Control. Release 238, 176.

  24. 24.

    R. Agarwal, P. Jurney, M. Raythatha, V. Singh, S. V. Sreenivasan, L. Shi, and K. Roy (2015). Adv. Health Mater. 4, 2269.

    CAS  Article  Google Scholar 

  25. 25.

    R. Fernandes, N. R. Smyth, O. L. Muskens, S. Nitti, A. Heuer-Jungemann, M. R. Ardern-Jones, and A. G. Kanaras (2015). Small 11, 713.

    CAS  Article  Google Scholar 

  26. 26.

    R. J. Tallarida Drug Synergism and Dose-Effect Data Analysis (Chapman & Hall/CRC, New York, 2000), pp. 5–248.

    Google Scholar 

  27. 27.

    S. Li, et al. (2020). Molecules 25, (3), 484.

    CAS  Article  Google Scholar 

  28. 28.

    H. Zhang, et al. (2015). Adv. Func. Mater. 25, (8), 1193.

    CAS  Article  Google Scholar 

  29. 29.

    Q. Hu, et al. (2016). Adv. Drug Deliv. Rev. 98, 19.

    CAS  Article  Google Scholar 

Download references


The work was performed according to the Government research assignment for ISPMS SB RAS, Project No. III. 23.2.10.

Author information



Corresponding author

Correspondence to Alla Fomenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fomenko, A., Kazantsev, S., Lozhkomoev, A.S. et al. Influence of Morphology and Textural Characteristics of γ-Al2O3 Nanostructures on the Potentiation of Doxorubicin. J Clust Sci (2021).

Download citation


  • Nanoparticles
  • γ-Al2O3
  • Synergistic drug combinations
  • Cancer therapy