Skip to main content
Log in

Influence of Morphology and Textural Characteristics of γ-Al2O3 Nanostructures on the Potentiation of Doxorubicin

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The combined application of chemotherapeutic agents and nanoparticles is a universal strategy in malignant tumors treatment. In the present study influence of γ-Al2O3 nanostructures morphology on its ability to potentiate doxorubicin was evaluated. Combined application of nanostructures and doxorubicin was evaluated using Neuro-2a, Hela, MCF-7 cell lines. It was found that regardless of γ-Al2O3 nanostructures morphology, its combined application with doxorubicin lead to synergetic effect. Moreover, the synergetic effect is observed at concentrations lower than IC50 values for monotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Kashif, C. Andersson, S. Hassan, H. Karlsson, W. Senkowski, M. Fryknäs, and M. G. Gustafsson (2015). Sci. Rep. 5, 14118.

    Article  CAS  Google Scholar 

  2. R. X. Zhang, et al. (2016). J. Control. Release 240, 489.

    Article  CAS  Google Scholar 

  3. Z. C. Soe, et al. (2019). Pharmaceutics 11, (2), 63.

    Article  CAS  Google Scholar 

  4. R. S. Fernandes, et al. (2018). Biomed. Pharmacother. 103, 1348.

    Article  CAS  Google Scholar 

  5. S. Eetezadi, S. N. Ekdawi, and C. Allen (2015). Adv. Drug Deliv. Rev. 91, 7.

    Article  CAS  Google Scholar 

  6. X. Liang, J. Gao, L. Jiang, J. Luo, L. Jing, X. Li, Y. Jin, and Z. Dai (2015). ACS Nano 9, 1280.

    Article  CAS  Google Scholar 

  7. A. E. Czapar, Y.-R. Zheng, I. A. Riddell, S. Shukla, S. G. Awuah, S. J. Lippard, and N. F. Steinmetz (2016). ACS Nano 10, 4119.

    Article  CAS  Google Scholar 

  8. L. He, H. Lai, and T. Chen (2015). Biomaterials 51, 30.

    Article  CAS  Google Scholar 

  9. M. Orecchioni, R. Cabizza, A. Bianco, and L. G. Delogu (2015). Theranostics 5, 710.

    Article  CAS  Google Scholar 

  10. J. Li, Z. Lyv, Y. Li, H. Liu, J. Wang, W. Zhan, H. Chen, H. Chen, and X. A. Li (2015). Biomaterials 51, 12.

    Article  CAS  Google Scholar 

  11. H. Meng, M. Wang, H. Liu, X. Liu, A. Situ, B. Wu, Z. Ji, C. H. Chang, and A. E. Nel (2015). ACS Nano 9, 3540.

    Article  CAS  Google Scholar 

  12. C. DelaTorre, I. Casanova, G. Acosta, C. Coll, M. J. Moreno, F. Albericio, E. Aznar, R. Mangues, M. Royo, F. Sancenón, and R. Martinez-Manez (2015). Adv. Funct. Mater. 25, 687.

    Article  CAS  Google Scholar 

  13. Y. Yuan, Z. Ding, J. Qian, J. Zhang, J. Xu, X. Dong, T. Han, S. Ge, Y. Luo, Y. Wang, K. Zhong, and G. Liang (2016). Nano Lett. 16, 2686.

    Article  CAS  Google Scholar 

  14. A. Angelopoulou, et al. (2019). ACS Omega 4, (26), 22214.

    Article  CAS  Google Scholar 

  15. M. Rui, et al. (2017). Mol. Pharm. 14, (1), 107.

    Article  CAS  Google Scholar 

  16. W. Wang, et al. (2019). Mater. Horiz. 6, (8), 1538.

    Article  CAS  Google Scholar 

  17. M. I. Lerner, et al. (2018). Nanoletters 18, (9), 5401.

    Article  CAS  Google Scholar 

  18. S. O. Kazantsev, et al. (2018). Mater. Res. Bull. 104, 97.

    Article  CAS  Google Scholar 

  19. B. S. Weakley, Beginner’s Handbook in Biological Electron Microscopy, 278 (1972).

  20. A. H. Undeen, and J. Vavra. Research methods for entomopathogenic protozoa. In: Manual of Techniques in Insect Pathology, ed. by L. Lacy (Academic Press, San Diego, 1997), pp. 117–149.

    Chapter  Google Scholar 

  21. E. S. Reynolds (1963). J. Cell Biol. 17, 208.

    Article  CAS  Google Scholar 

  22. P. Zhang, B. B. Li, J. W. Du, and Y. X. Wang (2017). Colloids Surf. 157, 18.

    Article  CAS  Google Scholar 

  23. A. Banerjee, J. P. Qi, R. Gogoi, J. Wong, and S. Mitragotri (2016).J. Control. Release 238, 176.

  24. R. Agarwal, P. Jurney, M. Raythatha, V. Singh, S. V. Sreenivasan, L. Shi, and K. Roy (2015). Adv. Health Mater. 4, 2269.

    Article  CAS  Google Scholar 

  25. R. Fernandes, N. R. Smyth, O. L. Muskens, S. Nitti, A. Heuer-Jungemann, M. R. Ardern-Jones, and A. G. Kanaras (2015). Small 11, 713.

    Article  CAS  Google Scholar 

  26. R. J. Tallarida Drug Synergism and Dose-Effect Data Analysis (Chapman & Hall/CRC, New York, 2000), pp. 5–248.

    Book  Google Scholar 

  27. S. Li, et al. (2020). Molecules 25, (3), 484.

    Article  CAS  Google Scholar 

  28. H. Zhang, et al. (2015). Adv. Func. Mater. 25, (8), 1193.

    Article  CAS  Google Scholar 

  29. Q. Hu, et al. (2016). Adv. Drug Deliv. Rev. 98, 19.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was performed according to the Government research assignment for ISPMS SB RAS, Project No. III. 23.2.10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla Fomenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomenko, A., Kazantsev, S., Lozhkomoev, A.S. et al. Influence of Morphology and Textural Characteristics of γ-Al2O3 Nanostructures on the Potentiation of Doxorubicin. J Clust Sci 33, 949–955 (2022). https://doi.org/10.1007/s10876-021-02009-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02009-4

Keywords

Navigation