Skip to main content

Advertisement

Log in

Preparation of Novel Nickel Oxide@ Glutamic/Thiosemicarbazide Nanoparticles: Implications for Cytotoxic and Anti-cancer Studies in MCF-7 Breast Cancer Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study, evaluate the anti-cancer properties of nickel oxide nanoparticles functionalized by glutamic acid and conjugated with thiosemicarbazide (NiO@Glu/TSC). First, the NiO@Glu/TSC nanoparticles were prepared using co-condensation reaction. Different techniques were achieved for confirming the synthesized nanoparticles such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS), DLS (dynamic light scattering) and ZP (zeta potential) analysis. Interestingly, the transmission electron microscopy (TEM) and scanning electron microscopy (SEM) results indicated that the structure and size of NiO@Glu/TSC nanoparticles were spherical ranging from 20 to 80 nm. NiO@Glu/TSC nanoparticles revealed significant growth inhibition of MCF-7 (human breast cancer) cells with IC50 values of 298.33 μg/mL, while no significant toxicity was evaluated in HEK293 (normal human embryonic kidney) cells after using in vitro toxicity method. Compared with HEK293 cells, MCF-7 cells elucidated a higher sensitivity to NiO@Glu/TSC nanoparticles. To determine the induction of apoptosis or necrosis, cells were double stained with fluorescein isothiocyanate (FITC)-Annexin V and Propidium Iodide (PI) and assessed by flow cytometry. Moreover, to elucidate the nuclear change through apoptosis, Hoechst 33258 staining was examined to investigate morphological features in the nuclei of MCF-7 cells. The results firmly suggest that NiO@Glu/TSC nanoparticles can be as a potential therapeutic agent for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal (2018). CA Cancer J. Clin. 68, 394.

    Article  Google Scholar 

  2. I. Baldea, A. Florea, D. Olteanu, S. Clichici, L. David, B. Moldovan, et al. (2020). Nanomedicine 15, 55.

    Article  CAS  Google Scholar 

  3. P. Navya, A. Kaphle, S. Srinivas, S. K. Bhargava, V. M. Rotello, and H. K. Daima (2019). Nano Converg 6, 23.

    Article  CAS  Google Scholar 

  4. G. Gahlawat and A. R. Choudhury (2019). RSC Adv. 9, 12944.

    Article  CAS  Google Scholar 

  5. Z. Amani-Beni and A. Nezamzadeh-Ejhieh (2018). Anal. Chim. Acta 1031, 47.

    Article  CAS  Google Scholar 

  6. K. Lingaraju, H. R. Naika, H. Nagabhushana, K. Jayanna, S. Devaraja, and G. Nagaraju (2020). Arab. J. Chem. 13, 4712.

    Article  CAS  Google Scholar 

  7. G. Pelosi (2010). Open Crystallogr. J. 3, 16.

    Article  CAS  Google Scholar 

  8. N. P. Prajapati and H. D. Patel (2019). Synth. Commun. 49, 2767.

    CAS  Google Scholar 

  9. S. A. S. Shandiz, A. Montazeri, M. Abdolhosseini, S. H. Shahrestani, M. Hedayati, Z. Moradi-Shoeili, et al. (2018). J. Clust. Sci. 29, 1107.

    Article  Google Scholar 

  10. J. L. Navarrete, V. Hernandez, and F. Ramirez (1995). J. Mol. Struct. 348, 249.

    Article  Google Scholar 

  11. K. Barick, A. Sharma, N. G. Shetake, R. Ningthoujam, R. Vatsa, P. Babu, et al. (2015). Dalton Trans. 44, 14686.

    Article  CAS  Google Scholar 

  12. P. Bindu and M. R. P. Kurup (1997). Transit. Met. Chem. 22, 578.

    Article  CAS  Google Scholar 

  13. A. Kumar, A. Saxena, A. De, R. Shankar, and S. Mozumdar (2013). Adv. Nat. Sci: Nanosci. 4, 025009.

    CAS  Google Scholar 

  14. C. Bonaccorso, T. Marzo, and D. La Mendola (2020). Pharmaceuticals 13, 4.

    Article  CAS  Google Scholar 

  15. P. J. Jansson, D. S. Kalinowski, D. J. Lane, Z. Kovacevic, N. A. Seebacher, L. Fouani, et al. (2015). Pharmacol. Res. 100, 255.

    Article  CAS  Google Scholar 

  16. N. R. Jyothi, N. M. Farook, M. Cho, and J. Shim (2013). Asian J. Chem. 25, 5841.

    Article  CAS  Google Scholar 

  17. M. Muralisankar, S. M. Basheer, J. Haribabu, N. S. Bhuvanesh, R. Karvembu, and A. Sreekanth (2017). Inorg. Chim. Acta 466, 61.

    Article  CAS  Google Scholar 

  18. M. Jarestan, K. Khalatbari, A. Pouraei, S. A. Sadat Shandiz, S. Beigi, M. Hedayati, et al. (2020). 3 Biotech. 10, 1.

    Article  Google Scholar 

  19. J. L. Fox and M. MacFarlane (2016). Br. J. Cancer. 115, 5.

    Article  CAS  Google Scholar 

  20. B. A. Carneiro and W. S. El-Deiry (2020). Nat. Rev. Clin. Oncol. 17, 395–417.

    Article  Google Scholar 

  21. S. Elmore (2007). Toxicol. Pathol. 35, 495.

    Article  CAS  Google Scholar 

  22. J. Wang, X. Deng, and F. Zhang (2014). Nanoscale Res. Lett. 9, 117.

    Article  Google Scholar 

  23. M. A. Siddiqui, M. Ahamed, J. Ahmad, M. A. Majeed Khan, J. Musarrat, A. A. Al-Khedhairy, et al. (2012). Food Chem. Toxicol. 50, 641.

    Article  CAS  Google Scholar 

  24. S. Khan, A. A. Ansari, A. Malik, A. A. Chaudhary, J. B. Syed, and A. A. Khan (2019). J. Trace Elem. Med. Biol. 52, 12–17.

    Article  CAS  Google Scholar 

  25. P. Kalaivani, S. Saranya, P. Poornima, R. Prabhakaran, F. Dallemer, V. V. Padma, and K. Natarajan (2014). Eur. J. Med. Chem. 82, 584.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Salehzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaszadeh, N., Jaahbin, N., Pouraei, A. et al. Preparation of Novel Nickel Oxide@ Glutamic/Thiosemicarbazide Nanoparticles: Implications for Cytotoxic and Anti-cancer Studies in MCF-7 Breast Cancer Cells. J Clust Sci 33, 457–465 (2022). https://doi.org/10.1007/s10876-021-01995-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-01995-9

Keywords

Navigation