Skip to main content

Advertisement

Log in

Recyclable Iron Oxide Loaded Poly (Methyl Methacrylate) Core/Polyethyleneimine Shell Nanoparticle as Antimicrobial Nanomaterial for Zoonotic Pathogen Controls

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, a recyclable antimicrobial agent against infectious pathogens in contaminated water was proposed. Iron oxide (IO) loaded poly (methyl methacrylate) (PMMA) core/polyethyleneimine (PEI) shell nanoparticles (PMMA/PEI-IO) was fabricated. The PMMA/PEI-IO showed a cationic surface charge property which is reflected by the protonation behavior of PEI. IO content in PMMA/PEI was evaluated by TGA and indicated that the residue incorporation of IO was 50% by dried weight. The existing of IO in PMMA/PEI was confirmed by the vibrating-sample magnetometer (VSM) showing a superparamagnetic property. The antibacterial ability was confirmed in waterborne bacteria, Escherichia coli and Staphylococcus aureus. The disturbance of the cell membrane integrity occurred after 20 min post-incubation of PMMA/PEI-IO with bacteria. Antimicrobial activity and recycling ability was further confirmed in an infectious, zoonotic and waterborne pathogen, Streptococcus agalactiae. Antiviral activity of PMMA/PEI-IO was observed and proved in an avian flu virus H3N2, a virus that has the potential to contaminate water reservoirs. The result showed that PMMA/PEI-IO nanoparticles were effective in killing H3N2. This study proposes a novel nanoparticle-based antimicrobial agents with recycle ability. Moreover, PMMA/PEI-IO nanoparticle is a potent bactericidal and virucidal agents when tested with waterborn zoonotic pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Fenwick (2006). Waterborne infectious diseases–could they be consigned to history? Science 313 (5790), 1077–1081. https://doi.org/10.1126/science.1127184.

    Article  CAS  PubMed  Google Scholar 

  2. “WHO | Guidelines for drinking-water quality, 3rd edition: Volume 1 - Recommendations,” WHO. http://www.who.int/water_sanitation_health/publications/gdwq3rev/en/ (accessed Mar. 09, 2020).

  3. A. E. Dalziel, S. Delean, S. Heinrich, and P. Cassey (2016). Persistence of low pathogenic influenza A virus in water: a systematic review and quantitative meta-analysis. PLoS ONE 11 (10), e0161929. https://doi.org/10.1371/journal.pone.0161929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. K. Dunnick and R. L. Melnick (1993). Assessment of the carcinogenic potential of chlorinated water: experimental studies of chlorine, chloramine, and trihalomethanes. J. Natl. Cancer Inst. 85 (10), 817–822. https://doi.org/10.1093/jnci/85.10.817.

    Article  CAS  PubMed  Google Scholar 

  5. H. Komulainen (2004). Experimental cancer studies of chlorinated by-products. Toxicology 198 (1–3), 239–248. https://doi.org/10.1016/j.tox.2004.01.031.

    Article  CAS  PubMed  Google Scholar 

  6. Y. Cao, M. Naseri, Y. He, C. Xu, L. J. Walsh, and Z. M. Ziora (2019). Non-antibiotic antimicrobial agents to combat biofilm-forming bacteria. J Glob Antimicrob Res. https://doi.org/10.1016/j.jgar.2019.11.012.

    Article  Google Scholar 

  7. S. D. Lakshmi, P. K. Avti, and G. Hegde (2018). Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: a review. Nano-Struct. Nano-Objects 16, 306–321. https://doi.org/10.1016/j.nanoso.2018.08.001.

    Article  CAS  Google Scholar 

  8. R. León, et al. (2020). Exploring small cationic peptides of different origin as potential antimicrobial agents in aquaculture. Fish Shellfish Immunol. 98, 720–727. https://doi.org/10.1016/j.fsi.2019.11.019.

    Article  CAS  PubMed  Google Scholar 

  9. M. R. P. K. Muraleedaran and V. M. A. Mujeeb (2015). Applications of chitosan powder with in situ synthesized nano ZnO particles as an antimicrobial agent. Int. J. Biol. Macromol. 77, 266–272. https://doi.org/10.1016/j.ijbiomac.2015.03.058.

    Article  CAS  PubMed  Google Scholar 

  10. M. Hasanin, A. El-Henawy, W. H. Eisa, H. El-Saied, and M. Sameeh (2019). Nano-amino acid cellulose derivatives: eco-synthesis, characterization, and antimicrobial properties. Int. J. Biol. Macromol. 132, 963–969. https://doi.org/10.1016/j.ijbiomac.2019.04.024.

    Article  CAS  PubMed  Google Scholar 

  11. X. Qu, P. J. J. Alvarez, and Q. Li (2013). Applications of nanotechnology in water and wastewater treatment. Water Res. 47 (12), 3931–3946. https://doi.org/10.1016/j.watres.2012.09.058.

    Article  CAS  PubMed  Google Scholar 

  12. T. Matsunaga, R. Tomoda, T. Nakajima, N. Nakamura, and T. Komine (1988). Continuous-sterilization system that uses photosemiconductor powders. Appl. Environ. Microbiol. 54 (6), 1330–1333.

    Article  CAS  Google Scholar 

  13. Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52 (4), 662–668. https://doi.org/10.1002/1097-4636(20001215)52:4%3c662::aid-jbm10%3e3.0.co;2-3.

    Article  CAS  PubMed  Google Scholar 

  14. S. Kang, M. Pinault, L. D. Pfefferle, and M. Elimelech (2007). Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23 (17), 8670–8673. https://doi.org/10.1021/la701067r.

    Article  CAS  PubMed  Google Scholar 

  15. M. J. Gallagher, H. Huang, K. J. Schwab, D. H. Fairbrother, and B. Teychene (2013). Generating backwashable carbon nanotube mats on the inner surface of polymeric hollow fiber membranes. J. Membr. Sci. 446, 59–67. https://doi.org/10.1016/j.memsci.2013.06.015.

    Article  CAS  Google Scholar 

  16. H. K. No, N. Young Park, S. Ho Lee, and S. P. Meyers (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 74 (1), 65–72. https://doi.org/10.1016/S0168-1605(01)00717-6.

    Article  CAS  PubMed  Google Scholar 

  17. H. Kusic, D. Leszczynska, N. Koprivanac, and I. Peternel (2011). Role of quantum dots nanoparticles in the chemical treatment of colored wastewater: catalysts or additional pollutants. J. Environ. Sci. 23 (9), 1479–1485. https://doi.org/10.1016/S1001-0742(10)60609-2.

    Article  CAS  Google Scholar 

  18. S. Galdiero, A. Falanga, M. Vitiello, M. Cantisani, V. Marra, and M. Galdiero (2011). Silver nanoparticles as potential antiviral agents. Molecules 16 (10), 8894–8918. https://doi.org/10.3390/molecules16108894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. Rai, S. D. Deshmukh, A. P. Ingle, I. R. Gupta, M. Galdiero, and S. Galdiero (2016). Metal nanoparticles: the protective nanoshield against virus infection. Crit. Rev. Microbiol. 42 (1), 46–56. https://doi.org/10.3109/1040841X.2013.879849.

    Article  CAS  PubMed  Google Scholar 

  20. R. Surudžić, et al. (2016). Physico–chemical and mechanical properties and antibacterial activity of silver/poly(vinyl alcohol)/graphene nanocomposites obtained by electrochemical method. Compos. Part B 85, 102–112. https://doi.org/10.1016/j.compositesb.2015.09.029.

    Article  CAS  Google Scholar 

  21. I.-G. Athanasoulia, M. Mikropoulou, S. Karapati, P. Tarantili, and C. Trapalis (2018). Study of thermomechanical and antibacterial properties of TiO2/Poly(lactic acid) nanocomposites. Mater. Today 5 (14), 27553–27562. https://doi.org/10.1016/j.matpr.2018.09.075.

    Article  CAS  Google Scholar 

  22. Y.-X. Hou, H. Abdullah, D.-H. Kuo, S.-J. Leu, N. S. Gultom, and C.-H. Su (2018). A comparison study of SiO2/nano metal oxide composite sphere for antibacterial application. Compos B 133, 166–176. https://doi.org/10.1016/j.compositesb.2017.09.021.

    Article  CAS  Google Scholar 

  23. K.-S. Huang, C.-H. Yang, S.-L. Huang, C.-Y. Chen, Y.-Y. Lu, and Y.-S. Lin (2016). Recent advances in antimicrobial polymers: a mini-review. Int J Mol Sci. https://doi.org/10.3390/ijms17091578.

    Article  PubMed  PubMed Central  Google Scholar 

  24. W. A. Rutala and D. J. Weber (2013). Disinfection and sterilization: an overview. Am. J. Infect. Control 41 (5 Suppl), S2-5. https://doi.org/10.1016/j.ajic.2012.11.005.

    Article  PubMed  Google Scholar 

  25. F. Hossain, J. Perales-Perez Oscar, S. Hwang, and F. Román (2014). Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci. Total Environ. 466–467, 1047–1059. https://doi.org/10.1016/j.scitotenv.2013.08.009.

    Article  CAS  PubMed  Google Scholar 

  26. A. J. Huh and Y. J. Kwon (2011). ‘Nanoantibiotics’: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control Release 156 (2), 128–145. https://doi.org/10.1016/j.jconrel.2011.07.002.

    Article  CAS  PubMed  Google Scholar 

  27. M. Neu, D. Fischer, and T. Kissel (2005). Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J. Gene Med. 7 (8), 992–1009. https://doi.org/10.1002/jgm.773.

    Article  CAS  PubMed  Google Scholar 

  28. U. Lungwitz, M. Breunig, T. Blunk, and A. Göpferich (2005). Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm. 60 (2), 247–266. https://doi.org/10.1016/j.ejpb.2004.11.011.

    Article  CAS  PubMed  Google Scholar 

  29. N. Saengkrit, et al. (2012). The PEI-introduced CS shell/PMMA core nanoparticle for silencing the expression of E6/E7 oncogenes in human cervical cells. Carbohydr. Polym. 90 (3), 1323–1329. https://doi.org/10.1016/j.carbpol.2012.06.079.

    Article  CAS  PubMed  Google Scholar 

  30. S. A. Koplin, S. Lin, and T. Domanski (2008). Evaluation of the antimicrobial activity of cationic polyethylenimines on dry surfaces. Biotechnol. Prog. 24 (5), 1160–1165. https://doi.org/10.1002/btpr.32.

    Article  CAS  PubMed  Google Scholar 

  31. N. Hasan, et al. (2019). PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix. Mater. Sci. Eng. C 103, 109741. https://doi.org/10.1016/j.msec.2019.109741.

    Article  CAS  Google Scholar 

  32. J. Haldar, D. An, L. Álvarez de Cienfuegos, J. Chen, and A. M. Klibanov (2006). Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc. Natl. Acad. Sci. USA 103 (47), 17667–17671. https://doi.org/10.1073/pnas.0608803103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. N. Kawabata and M. Nishiguchi (1988). Antibacterial activity of soluble pyridinium-type polymers. Appl. Environ. Microbiol. 54 (10), 2532–2535.

    Article  CAS  Google Scholar 

  34. H. Khalil, T. Chen, R. Riffon, R. Wang, and Z. Wang (2008). Synergy between polyethylenimine and different families of antibiotics against a resistant clinical isolate of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 52 (5), 1635–1641. https://doi.org/10.1128/AAC.01071-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M. Ratanajanchai, S. Soodvilai, N. Pimpha, and P. Sunintaboon (2014). Polyethylenimine-immobilized core–shell nanoparticles: synthesis, characterization, and biocompatibility test. Mater. Sci. Eng. C 34, 377–383. https://doi.org/10.1016/j.msec.2013.09.037.

    Article  CAS  Google Scholar 

  36. S. Mornet, S. Vasseur, F. Grasset, and E. Duguet (2004). Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14 (14), 2161–2175. https://doi.org/10.1039/B402025A.

    Article  CAS  Google Scholar 

  37. O. Veiseh, J. W. Gunn, and M. Zhang (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 62 (3), 284–304. https://doi.org/10.1016/j.addr.2009.11.002.

    Article  CAS  PubMed  Google Scholar 

  38. J. Yang, J. Gunn, S. R. Dave, M. Zhang, Y. A. Wang, and X. Gao (2008). Ultrasensitive detection and molecular imaging with magnetic nanoparticles. Analyst 133 (2), 154–160. https://doi.org/10.1039/b700091j.

    Article  CAS  PubMed  Google Scholar 

  39. L. J. Reed, H. Muench, H. A. Muench, L. I. Reed, L. I. Reed, and L. J. Reed, A simple method of estimating fifty percent endpoints. 1938, Accessed March 09, 2020. https://www.scienceopen.com/document?vid=21401620-94ad-4100-a3e1-56741c541ab6.

  40. T. Xia, et al. (2009). Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3 (10), 3273–3286. https://doi.org/10.1021/nn900918w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. D. Ziebarth and Y. Wang (2010). Understanding the protonation behavior of linear polyethylenimine in solutions through Monte Carlo simulations. Biomacromolecules 11 (1), 29–38. https://doi.org/10.1021/bm900842d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. K. Gibney, et al. (2012). Poly(ethylene imine)s as antimicrobial agents with selective activity. Macromol. Biosci. 12 (9), 1279–1289. https://doi.org/10.1002/mabi.201200052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. L. Zhou, B. He, and F. Zhang (2012). Facile one-pot synthesis of iron oxide nanoparticles cross-linked magnetic poly(vinyl alcohol) gel beads for drug delivery. ACS Appl. Mater. Interfaces 4 (1), 192–199. https://doi.org/10.1021/am201649b.

    Article  CAS  PubMed  Google Scholar 

  44. S. Saesoo, et al. (2018). Characterization of liposome-containing SPIONs conjugated with anti-CD20 developed as a novel theranostic agent for central nervous system lymphoma. Colloids Surf. B Biointerfaces 161, 497–507. https://doi.org/10.1016/j.colsurfb.2017.11.003.

    Article  CAS  PubMed  Google Scholar 

  45. C. Wiegand, M. Bauer, U.-C. Hipler, and D. Fischer (2013). Poly(ethyleneimines) in dermal applications: biocompatibility and antimicrobial effects. Int. J. Pharm. 456 (1), 165–174. https://doi.org/10.1016/j.ijpharm.2013.08.001.

    Article  CAS  PubMed  Google Scholar 

  46. Y.-M. Chen, Y.-C. Chung, L. W. Wang, K.-T. Chen, and S.-Y. Li (2002). Antibacterial properties of chitosan in waterborne pathogen. J. Environ. Sci. Health Part A 37 (7), 1379–1390. https://doi.org/10.1081/ESE-120005993.

    Article  Google Scholar 

  47. R. M. Epand and R. F. Epand (2009). Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochimica et Biophysica Acta (BBA) - Biomembranes 1788 (1), 289–294. https://doi.org/10.1016/j.bbamem.2008.08.023.

    Article  CAS  Google Scholar 

  48. R. M. Epand, C. Walker, R. F. Epand, and N. A. Magarvey (2016). Molecular mechanisms of membrane targeting antibiotics. Biochimica et Biophysica Acta (BBA) - Biomembranes 1858 (5), 980–987. https://doi.org/10.1016/j.bbamem.2015.10.018.

    Article  CAS  Google Scholar 

  49. I. Stock and B. Wiedemann (1999). Natural antibiotic susceptibility of Escherichia coli, Shigella, E. vulneris, and E. hermannii strains. Diagn. Microbiol. Infect. Dis. 33 (3), 187–199. https://doi.org/10.1016/S0732-8893(98)00146-1.

    Article  CAS  PubMed  Google Scholar 

  50. H. Nogueira, S. Toma, A. Silveira Jr., and K. Araki (2020). Zeolite-SPION nanocomposite for ammonium and heavy metals removal from wastewater. J Braz Chem Soc. https://doi.org/10.21577/0103-5053.20200097.

    Article  Google Scholar 

  51. A. Kapri, M. G. H. Zaidi, A. Satlewal, and R. Goel (2010). SPION-accelerated biodegradation of low-density polyethylene by indigenous microbial consortium. Int. Biodeterior Biodegrad 64, 238–244. https://doi.org/10.1016/j.ibiod.2010.02.002.

    Article  CAS  Google Scholar 

  52. N. Mon-On, W. Surachetpong, S. Mongkolsuk, and K. Sirikanchana (2018). Roles of water quality and disinfectant application on inactivation of fish pathogenic Streptococcus agalactiae with povidone iodine, quaternary ammonium compounds and glutaraldehyde. J. Fish Dis. 41 (5), 783–789. https://doi.org/10.1111/jfd.12776.

    Article  CAS  PubMed  Google Scholar 

  53. S. Shigematsu, et al. (2014). Influenza A virus survival in water is influenced by the origin species of the host cell. Influenza Other Respir. Viruses 8 (1), 123–130. https://doi.org/10.1111/irv.12179.

    Article  PubMed  Google Scholar 

  54. G. A. Spoden, et al. (2012). Polyethylenimine is a strong inhibitor of human papillomavirus and cytomegalovirus infection. Antimicrob. Agents Chemother. 56 (1), 75–82. https://doi.org/10.1128/AAC.05147-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. M. Rossier, A. Schaetz, E. Athanassiou, R. Grass, and W. Stark (2011). Reversible As(V) adsorption on magnetic nanoparticles and pH dependent desorption concentrates dilute solutions and realizes true moving bed reactor systems. Chem. Eng. J. 175, 244–250. https://doi.org/10.1016/j.cej.2011.09.101.

    Article  CAS  Google Scholar 

  56. C. Lu, H. Chiu, and H. Bai (2007). Comparisons of adsorbent cost for the removal of zinc(II) from aqueous solution by carbon nanotubes and activated carbon. J. Nanosci. Nanotechnol. 7, 1647–1652. https://doi.org/10.1166/jnn.2007.349.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by NANOTEC, NSTDA, Ministry of Higher Education, Science, Research and Innovation (MHESI), Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nattika Saengkrit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimpha, N., Woramongkolchai, N., Sunintaboon, P. et al. Recyclable Iron Oxide Loaded Poly (Methyl Methacrylate) Core/Polyethyleneimine Shell Nanoparticle as Antimicrobial Nanomaterial for Zoonotic Pathogen Controls. J Clust Sci 33, 567–577 (2022). https://doi.org/10.1007/s10876-021-01990-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-01990-0

Keywords

Navigation