Abstract
Studies on Cu-doped germanium clusters in the neutral and mono-anion states CuGen−/0 (n = 4–13) are carried out employing a double-hybrid density functional mPW2PLYP scheme. The global minimal structure, spectral property, HOMO–LUMO gap, and stability of CuGen−/0 (n = 4–13) were confirmed. The results showed that the global minimal structures of the anionic clusters are Cu-substituted for a Ge in the ground state of anionic Gen+1− with n ≤ 8, and Cu atom is encapsulated into germanium cages starting from n = 9. For neutral, it is also Cu-encapsulated into cage-like Ge framework with n ≥ 9. The spectra information including adiabatic electron affinity, vertical detachment energy and simulated photoelectron spectroscopy were presented. The HOMO–LUMO gap, atomization energy, and second energy difference for CuGen−/0 (n = 4–13) clusters along with NICS of CuGe12− were evaluated to examine the thermodynamic and chemical stability. The results revealed that anionic cluster CuGe12− with a high-symmetry endohedral Ih configuration possessed a perfect thermodynamic stability and chemical reactivity, making it possible as appropriate building block for new multi-functional semiconductor materials.
Similar content being viewed by others
References
T. B. Tai and M. T. Nguyen (2011). J. Chem. Theory. Comput. 7, 1119–1130.
W. An (2018). Phys. Chem. Chem. Phys. 20, 25746–25751.
K. A. Gingerich, M. S. Baba, R. W. Schmude Jr, and J. E. Kingcade Jr(2000). Chem. Phys.262, 65–74.
J. M. Hunter, J. L. Fye, and M. F. Jarrold (1994). Phys. Rev. Lett. 73, 2063–2066.
D. A. Hostutler, H. Y. Li, D. J. Clouthier, and G. Wannous (2002). J. Chem. Phys. 116, 4135–4141.
K. A. Gingerich, R. W. Schmude, M. S. Baba, and G. Meloni (2000). J. Chem. Phys. 112, 7443–7448.
O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, Y. Liu, and R. E. Smalley (1987). Chem. Phys. Lett. 138, 119–124.
C. C. Arnold, C. S. Xu, G. R. Burton, and D. M. Neumark (1995). J. Chem. Phys. 102, 6982–6989.
G. R. Burton, C. S. Xu, C. C. Arnold, and D. M. Neumark (1996). J. Chem. Phys. 104, 2757–2764.
Y. Negishi, H. Kawamata, T. Hayase, M. Gomei, R. Kishi, and F. Hayakawa (1997). Chem. Phys. Lett. 269, 199–207.
Y. Negishi, H. Kawamata, F. Hayakawa, A. Nakajima, and K. Kaya (1998). Chem. Phys. Lett. 29, 370–376.
U. Farooq, S. Naz, H. G. Xu, B. Yang, X. L. Xu, and W. J. Zheng (2020). Chem. Rev. 403, 213095.
J. Wang and J. G. Han (2005). J. Chem. Phys. 122, 164305.
T. B. Tai and M. T. Nguyen (2011). J. Phys. Chem. A 115, 9993–9999.
D. Bandyopadhyay (2012). J. Mol. Model. 18, 3887–3902.
T. B. Tai, H. M. T. Nguyen, and M. T. Nguyen (2011). Chem. Phys. Lett. 502, 187–193.
W. Qin, W. C. Lu, L. H. Xia, L. Z. Zhao, Q. J. Zang, C. Z. Wang, and K. M. Ho (2015). Aip. Adv. 5, 067159.
X. J. Li, H. J. Ren, and L. M. Yang (2012). J. Nanomater. 2012, 1–8.
S. Mahtout, C. Siouani, and F. Rabilloud (2018). J. Phys. Chem. A.122, 662–677.
A. C. Tsipis and D. N. Gkarmpounis (2012). J. Comput. Chem. 33, 2318–2331.
S. Neukermans, X. Wang, N. Veldeman, E. Janssens, R. E. Silverans, and P. Lievens (2006). Int. J. Mass. Spectrom. 252, 145–150.
J. Atobe, K. Koyasu, S. Furuse, and A. Nakajima (2012). Phys. Chem. Chem. Phys. 14, 9403–9410.
X. J. Deng, X. Y. Kong, X. Q. Liang, B. Yang, H. G. Xu, X. L. Xu, G. Feng, and W. J. Zheng (2017). J. Chem. Phys. 147, 234310.
S. J. Lu, L. R. Hu, X. L. Xu, H. G. Xu, H. Chen, and W. J. Zheng (2016). Phys. Chem. Chem. Phys. 18, 20321–20329.
X. J. Deng, X. Y. Kong, X. L. Xu, H. G. Xu, and W. J. Zheng (2016). Chinese. J. Chem. Phys. 29, 123–128.
X. J. Deng, X. Y. Kong, H. G. Xu, X. L. Xu, G. Feng, and W. J. Zheng (2015). J. Phys. Chem. C 119, 11048–11055.
X. J. Deng, X. Y. Kong, X. L. Xu, H. G. Xu, and W. J. Zheng (2014). J. Chem. Phys. Chem. 15, 3987–3993.
Y. Y. Jin, S. J. Lu, A. Hermann, X. Y. Kuang, C. Z. Zhang, C. Lu, H. G. Xu, and W. J. Zheng (2016). Sci. Rep. 6, 1–8.
J. Wang and J. G. Han (2006). J. Phys. Chem. A 110, 12670–12677.
J. Wang and J. G. Han (2006). J. Phys. Chem. B 110, 7820–7827.
Q. Jing, F. Y. Tian, and Y. X. Wang (2008). J. Chem. Phys. 128, 124319.
W. J. Zhao and Y. X. Wang (2008). J. Chem. Phys. 352, 291–296.
W. J. Zhao and Y. X. Wang (2009). J. Mol. Struct. 901, 18–23.
D. Bandyopadhyay, P. Kaur, and P. Sen (2010). J. Phys. Chem. A 114, 12986–12991.
D. Bandyopadhyay and P. Sen (2010). J. Phys. Chem. A 114, 1835–1842.
M. K. N. Bhattacharyya and D. Bandyopadhyay (2012). J. Mol. Model. 18, 405–418.
D. Bandyopadhyay (2019). J. Struct. Chem. 30, 955–963.
N. Kapila, V. K. Jindal, and H. Sharma (2011). J. Phys. B 406, 4612–4619.
N. Kapila, I. Garg, V. K. Jindal, and H. Sharma (2012). J. Magn. Magn. Mater. 324, 2885–2893.
S. Mahtout and Y. Tariket (2016). J. Chem. Phys. 472, 270–277.
C. Siouani, S. Mahtout, S. Safer, and F. Rabilloud (2017). J. Phys. Chem. A.121, 3540–3554.
C. Siouani, S. Mahtout, and F. Rabilloud (2019). J. Mol. Model. 25, 113.
V. T. Tran, M. T. Nguyen, and Q. T. Tran (2017). J. Phys. Chem. A.121, 7787–7796.
V. T. Tran and Q. T. Tran (2018). J. Comput. Chem. 39, 2103–2109.
V.T. Tran, and Q. T. Tran (2018). J. Phys. Chem. A.122, 6407–6415.
N. A. Borshch and S. I. Kurganskii (2018). Inorg. Mater. 54, 1–7.
J. Zhang and M. Dolg (2015). Phys. Chem. Chem. Phys. 17, 24173–24181.
J. Zhang and M. Dolg (2016). Phys. Chem. Chem. Phys. 18, 3003–3010.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M.Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro,M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R.Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J.Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken,C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R.Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski,G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B.Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision C.01,Gaussian, Inc., Wallingford CT, 2010.
C. Adamo and V. Barone (1999). J. Chem. Phys. 110, 6158–6170.
A. Bergner, M. Dolg, W. Küchle, H. Stoll, and H. Preuß (1993). Mol. Phys. 80, 1431–1441.
W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284–298.
J. M. L. Martin and A. Sundermann (2001). J. Chem. Phys. 114, 3408–3420.
N. B. Balabanov and K. A. Peterson (2005). J. Chem. Phys. 123, 064107.
T. Schwabe and S. Grimme (2006). Phys. Chem. Chem. Phys. 8, 4398–4401.
X. H. Xie, D. S. Hao, Y. M. Liu, and J. C. Yang (2015). J. Comput. Theor. Chem. 1074, 1–8.
Y. M. Liu, J. C. Yang, and L. Cheng (2018). Inorg. Chem. 57, 12934–12940.
C. X. Dong, L. M. Han, J. C. Yang, and L. Cheng (2019). Int. J. Mol. Sci. 20, 2933.
C. X. Dong, L. M. Han, J. C. Yang, and L. Cheng (2019). Int. J. Quantum. chem.119, e25978.
X. Li, H. B. Wu, X. B. Wang, and L. S. Wang (1998). Phys. Rev. Lett. 81, 1909–1912.
S. N. Khanna, B. K. Rao, and P. Jena (2002). Phys. Rev. B 65, 125105.
D. E. Bergeron, A. W. Castleman Jr., T. Morisato, and S. N. Khanna (2004). Science. 304, 84–87.
Acknowledgements
This study was supported by the National Natural Science Foundation of China (Grant No. 21863007), by the Science and Technology Plan Project in Inner Mongolia Autonomous Region (Grant No. JH20180633), and by Science research project of Inner Mongolia University of Technology (Grant No. BS2020023).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, X., Dong, C. & Yang, J. Theoretical Study on Structural Stability, Growth Behavior and Photoelectron Spectroscopy of Copper-Doped Germanium Clusters CuGen−/0 (n = 4–13). J Clust Sci 33, 403–412 (2022). https://doi.org/10.1007/s10876-021-01985-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10876-021-01985-x