Skip to main content
Log in

Theoretical Study on Structural Stability, Growth Behavior and Photoelectron Spectroscopy of Copper-Doped Germanium Clusters CuGen−/0 (n = 4–13)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Studies on Cu-doped germanium clusters in the neutral and mono-anion states CuGen−/0 (n = 4–13) are carried out employing a double-hybrid density functional mPW2PLYP scheme. The global minimal structure, spectral property, HOMO–LUMO gap, and stability of CuGen−/0 (n = 4–13) were confirmed. The results showed that the global minimal structures of the anionic clusters are Cu-substituted for a Ge in the ground state of anionic Gen+1 with n ≤ 8, and Cu atom is encapsulated into germanium cages starting from n = 9. For neutral, it is also Cu-encapsulated into cage-like Ge framework with n ≥ 9. The spectra information including adiabatic electron affinity, vertical detachment energy and simulated photoelectron spectroscopy were presented. The HOMO–LUMO gap, atomization energy, and second energy difference for CuGen−/0 (n = 4–13) clusters along with NICS of CuGe12 were evaluated to examine the thermodynamic and chemical stability. The results revealed that anionic cluster CuGe12 with a high-symmetry endohedral Ih configuration possessed a perfect thermodynamic stability and chemical reactivity, making it possible as appropriate building block for new multi-functional semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. B. Tai and M. T. Nguyen (2011). J. Chem. Theory. Comput. 7, 1119–1130.

    Article  CAS  PubMed  Google Scholar 

  2. W. An (2018). Phys. Chem. Chem. Phys. 20, 25746–25751.

    Article  CAS  PubMed  Google Scholar 

  3. K. A. Gingerich, M. S. Baba, R. W. Schmude Jr, and J. E. Kingcade Jr(2000). Chem. Phys.262, 65–74.

  4. J. M. Hunter, J. L. Fye, and M. F. Jarrold (1994). Phys. Rev. Lett. 73, 2063–2066.

    Article  CAS  PubMed  Google Scholar 

  5. D. A. Hostutler, H. Y. Li, D. J. Clouthier, and G. Wannous (2002). J. Chem. Phys. 116, 4135–4141.

    Article  CAS  Google Scholar 

  6. K. A. Gingerich, R. W. Schmude, M. S. Baba, and G. Meloni (2000). J. Chem. Phys. 112, 7443–7448.

    Article  CAS  Google Scholar 

  7. O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, Y. Liu, and R. E. Smalley (1987). Chem. Phys. Lett. 138, 119–124.

    Article  Google Scholar 

  8. C. C. Arnold, C. S. Xu, G. R. Burton, and D. M. Neumark (1995). J. Chem. Phys. 102, 6982–6989.

    Article  CAS  Google Scholar 

  9. G. R. Burton, C. S. Xu, C. C. Arnold, and D. M. Neumark (1996). J. Chem. Phys. 104, 2757–2764.

    Article  CAS  Google Scholar 

  10. Y. Negishi, H. Kawamata, T. Hayase, M. Gomei, R. Kishi, and F. Hayakawa (1997). Chem. Phys. Lett. 269, 199–207.

    Article  CAS  Google Scholar 

  11. Y. Negishi, H. Kawamata, F. Hayakawa, A. Nakajima, and K. Kaya (1998). Chem. Phys. Lett. 29, 370–376.

    Article  Google Scholar 

  12. U. Farooq, S. Naz, H. G. Xu, B. Yang, X. L. Xu, and W. J. Zheng (2020). Chem. Rev. 403, 213095.

    CAS  Google Scholar 

  13. J. Wang and J. G. Han (2005). J. Chem. Phys. 122, 164305.

    Article  Google Scholar 

  14. T. B. Tai and M. T. Nguyen (2011). J. Phys. Chem. A 115, 9993–9999.

    Article  CAS  Google Scholar 

  15. D. Bandyopadhyay (2012). J. Mol. Model. 18, 3887–3902.

    Article  CAS  PubMed  Google Scholar 

  16. T. B. Tai, H. M. T. Nguyen, and M. T. Nguyen (2011). Chem. Phys. Lett. 502, 187–193.

    Article  CAS  Google Scholar 

  17. W. Qin, W. C. Lu, L. H. Xia, L. Z. Zhao, Q. J. Zang, C. Z. Wang, and K. M. Ho (2015). Aip. Adv. 5, 067159.

    Article  Google Scholar 

  18. X. J. Li, H. J. Ren, and L. M. Yang (2012). J. Nanomater. 2012, 1–8.

    Google Scholar 

  19. S. Mahtout, C. Siouani, and F. Rabilloud (2018). J. Phys. Chem. A.122, 662–677.

  20. A. C. Tsipis and D. N. Gkarmpounis (2012). J. Comput. Chem. 33, 2318–2331.

    Article  CAS  PubMed  Google Scholar 

  21. S. Neukermans, X. Wang, N. Veldeman, E. Janssens, R. E. Silverans, and P. Lievens (2006). Int. J. Mass. Spectrom. 252, 145–150.

    Article  CAS  Google Scholar 

  22. J. Atobe, K. Koyasu, S. Furuse, and A. Nakajima (2012). Phys. Chem. Chem. Phys. 14, 9403–9410.

    Article  CAS  PubMed  Google Scholar 

  23. X. J. Deng, X. Y. Kong, X. Q. Liang, B. Yang, H. G. Xu, X. L. Xu, G. Feng, and W. J. Zheng (2017). J. Chem. Phys. 147, 234310.

    Article  PubMed  Google Scholar 

  24. S. J. Lu, L. R. Hu, X. L. Xu, H. G. Xu, H. Chen, and W. J. Zheng (2016). Phys. Chem. Chem. Phys. 18, 20321–20329.

    Article  CAS  PubMed  Google Scholar 

  25. X. J. Deng, X. Y. Kong, X. L. Xu, H. G. Xu, and W. J. Zheng (2016). Chinese. J. Chem. Phys. 29, 123–128.

    CAS  Google Scholar 

  26. X. J. Deng, X. Y. Kong, H. G. Xu, X. L. Xu, G. Feng, and W. J. Zheng (2015). J. Phys. Chem. C 119, 11048–11055.

    Article  CAS  Google Scholar 

  27. X. J. Deng, X. Y. Kong, X. L. Xu, H. G. Xu, and W. J. Zheng (2014). J. Chem. Phys. Chem. 15, 3987–3993.

    Article  CAS  Google Scholar 

  28. Y. Y. Jin, S. J. Lu, A. Hermann, X. Y. Kuang, C. Z. Zhang, C. Lu, H. G. Xu, and W. J. Zheng (2016). Sci. Rep. 6, 1–8.

    Article  Google Scholar 

  29. J. Wang and J. G. Han (2006). J. Phys. Chem. A 110, 12670–12677.

    Article  CAS  PubMed  Google Scholar 

  30. J. Wang and J. G. Han (2006). J. Phys. Chem. B 110, 7820–7827.

    Article  CAS  PubMed  Google Scholar 

  31. Q. Jing, F. Y. Tian, and Y. X. Wang (2008). J. Chem. Phys. 128, 124319.

    Article  PubMed  Google Scholar 

  32. W. J. Zhao and Y. X. Wang (2008). J. Chem. Phys. 352, 291–296.

    CAS  Google Scholar 

  33. W. J. Zhao and Y. X. Wang (2009). J. Mol. Struct. 901, 18–23.

    Article  CAS  Google Scholar 

  34. D. Bandyopadhyay, P. Kaur, and P. Sen (2010). J. Phys. Chem. A 114, 12986–12991.

    Article  CAS  PubMed  Google Scholar 

  35. D. Bandyopadhyay and P. Sen (2010). J. Phys. Chem. A 114, 1835–1842.

    Article  CAS  PubMed  Google Scholar 

  36. M. K. N. Bhattacharyya and D. Bandyopadhyay (2012). J. Mol. Model. 18, 405–418.

    Article  PubMed  Google Scholar 

  37. D. Bandyopadhyay (2019). J. Struct. Chem. 30, 955–963.

    Article  CAS  Google Scholar 

  38. N. Kapila, V. K. Jindal, and H. Sharma (2011). J. Phys. B 406, 4612–4619.

    Article  CAS  Google Scholar 

  39. N. Kapila, I. Garg, V. K. Jindal, and H. Sharma (2012). J. Magn. Magn. Mater. 324, 2885–2893.

    Article  CAS  Google Scholar 

  40. S. Mahtout and Y. Tariket (2016). J. Chem. Phys. 472, 270–277.

    CAS  Google Scholar 

  41. C. Siouani, S. Mahtout, S. Safer, and F. Rabilloud (2017). J. Phys. Chem. A.121, 3540–3554.

  42. C. Siouani, S. Mahtout, and F. Rabilloud (2019). J. Mol. Model. 25, 113.

    Article  CAS  PubMed  Google Scholar 

  43. V. T. Tran, M. T. Nguyen, and Q. T. Tran (2017). J. Phys. Chem. A.121, 7787–7796.

  44. V. T. Tran and Q. T. Tran (2018). J. Comput. Chem. 39, 2103–2109.

    Article  CAS  PubMed  Google Scholar 

  45. V.T. Tran, and Q. T. Tran (2018). J. Phys. Chem. A.122, 6407–6415.

  46. N. A. Borshch and S. I. Kurganskii (2018). Inorg. Mater. 54, 1–7.

    Article  CAS  Google Scholar 

  47. J. Zhang and M. Dolg (2015). Phys. Chem. Chem. Phys. 17, 24173–24181.

    Article  CAS  PubMed  Google Scholar 

  48. J. Zhang and M. Dolg (2016). Phys. Chem. Chem. Phys. 18, 3003–3010.

    Article  CAS  PubMed  Google Scholar 

  49. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M.Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro,M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R.Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J.Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken,C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R.Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski,G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B.Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision C.01,Gaussian, Inc., Wallingford CT, 2010.

  50. C. Adamo and V. Barone (1999). J. Chem. Phys. 110, 6158–6170.

    Article  CAS  Google Scholar 

  51. A. Bergner, M. Dolg, W. Küchle, H. Stoll, and H. Preuß (1993). Mol. Phys. 80, 1431–1441.

    Article  CAS  Google Scholar 

  52. W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284–298.

    Article  CAS  Google Scholar 

  53. J. M. L. Martin and A. Sundermann (2001). J. Chem. Phys. 114, 3408–3420.

    Article  CAS  Google Scholar 

  54. N. B. Balabanov and K. A. Peterson (2005). J. Chem. Phys. 123, 064107.

    Article  Google Scholar 

  55. T. Schwabe and S. Grimme (2006). Phys. Chem. Chem. Phys. 8, 4398–4401.

    Article  CAS  PubMed  Google Scholar 

  56. X. H. Xie, D. S. Hao, Y. M. Liu, and J. C. Yang (2015). J. Comput. Theor. Chem. 1074, 1–8.

    Article  CAS  Google Scholar 

  57. Y. M. Liu, J. C. Yang, and L. Cheng (2018). Inorg. Chem. 57, 12934–12940.

    Article  CAS  PubMed  Google Scholar 

  58. C. X. Dong, L. M. Han, J. C. Yang, and L. Cheng (2019). Int. J. Mol. Sci. 20, 2933.

    Article  CAS  PubMed Central  Google Scholar 

  59. C. X. Dong, L. M. Han, J. C. Yang, and L. Cheng (2019). Int. J. Quantum. chem.119, e25978.

  60. X. Li, H. B. Wu, X. B. Wang, and L. S. Wang (1998). Phys. Rev. Lett. 81, 1909–1912.

    Article  CAS  Google Scholar 

  61. S. N. Khanna, B. K. Rao, and P. Jena (2002). Phys. Rev. B 65, 125105.

    Article  Google Scholar 

  62. D. E. Bergeron, A. W. Castleman Jr., T. Morisato, and S. N. Khanna (2004). Science. 304, 84–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 21863007), by the Science and Technology Plan Project in Inner Mongolia Autonomous Region (Grant No. JH20180633), and by Science research project of Inner Mongolia University of Technology (Grant No. BS2020023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jucai Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Dong, C. & Yang, J. Theoretical Study on Structural Stability, Growth Behavior and Photoelectron Spectroscopy of Copper-Doped Germanium Clusters CuGen−/0 (n = 4–13). J Clust Sci 33, 403–412 (2022). https://doi.org/10.1007/s10876-021-01985-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-01985-x

Keywords

Navigation