Skip to main content
Log in

A Mixed Ligands Strategy Based Luminescent Binuclear Cadmium(II) Coordination Polymer as Chemo-sensor in the Detection of Nitrofurantoin Antibiotic in Water

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Guided by mixed ligands strategy, a novel binuclear cadmium(II) coordination polymer, {[Cd2(HDDB)(m-bib)(H2O)2]·1.5H2O·DMF}n (1) [H5DDB = 3,5-di(2′,4′-dicarboxylphenyl)benozoic acid, m-bib = 1,3-bis(imidazol-1-yl)benzene], was constructed under solvothermal condition and then was further characterized by X-ray crystallography, IR, EA, TG, and PXRD. Structure analysis shows 1 displaying a new (3,4)-c {6.82}4{62.84} sheet when HDDB4− ligands and the [Cd2(COO)2] SBUs were simplified into 3-connected and 4-connected nodes. And further fluorescence analysis revealed that 1 showing outstanding performances as efficient chemo-sensor in the detection of NFT antibiotic in aqueous solution with low LOD, high selectivity, high sensitivity, and strong anti-interference. Besides, the mechanisms of luminescence quenching were explored from the viewpoints of inner filter effects (IFE) and the photo-induced electron transfer (PET), implied by the optical spectroscopy and quantum chemical calculation.

Graphic Abstract

Based on the mixed ligands strategy, a 2D binuclear Cd(II)CP was constructed and can be act as efficient chemo-sensor in the detection of NFT antibiotic in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. M. Thompson, C. R. Kirman, D. M. Proctor, L. C. Haws, M. Suh, S. M. Hays, J. G. Hixon, and M. A. Harris (2014). J. Appl. Toxicol. 34, 525.

    Article  CAS  PubMed  Google Scholar 

  2. A. Zhitkovich (2005). Chem. Res. Toxicol. 18, 3.

    Article  CAS  PubMed  Google Scholar 

  3. F. C. Manning, L. J. Blankenship, J. P. Wise, J. Xu, L. C. Bridgewater, and S. R. Patierno (1994). Environ. Health Persp. 102, 159.

    CAS  Google Scholar 

  4. A.-J. Liu, F. Xu, S.-D. Han, J. Pan, and G.-M. Wang (2020). Cryst. Growth Des. 20, 7350.

    Article  CAS  Google Scholar 

  5. Y.-B. Huang, J. Liang, X.-S. Wang, and R. Cao (2017). Chem. Soc. Rev. 46, 126.

    Article  CAS  PubMed  Google Scholar 

  6. M. Pan, Y.-X. Zhu, K. Wu, L. Chen, Y.-J. Hou, S.-Y. Yin, H.-P. Wang, Y.-N. Fan, and C.-Y. Su (2017). Angew. Chem. Int. Ed. 56, 14582.

    Article  CAS  Google Scholar 

  7. A. Proust, B. Matt, R. Villanneau, G. Guillemot, P. Gouzerh, and G. Izzet (2012). Chem. Soc. Rev. 41, 7605.

    Article  CAS  PubMed  Google Scholar 

  8. H.-H. Liu, J. Pan, Z.-Z. Xue, S.-D. Han, J.-H. Li, and G.-M. Wang (2019). Cryst. Growth Des. 19, 5326.

    Article  CAS  Google Scholar 

  9. Z.-H. Pan, C.-L. Deng, Z. Wang, J.-Q. Lin, G.-G. Luo, and D. Sun (2020). CrystEngComm 22, 3736.

    Article  CAS  Google Scholar 

  10. L. Fan, W. Fan, B. Li, X. Liu, X. Zhao, and X. Zhang (2015). Dalton Trans. 44, 2380.

    Article  CAS  PubMed  Google Scholar 

  11. Q. Zhang, M. Lei, H. Yan, J. Wang, and Y. Shi (2017). Inorg. Chem. 56, 7610.

    Article  CAS  PubMed  Google Scholar 

  12. S.-L. Han, J. Yang, D. Tripathy, X.-Q. Guo, S.-J. Hu, X.-Z. Li, L.-X. Cai, L.-P. Zhou, and Q.-F. Sun (2020). Inorg. Chem. 59, 14023.

    Article  CAS  PubMed  Google Scholar 

  13. G.-D. Wang, Y.-Z. Li, W.-J. Shi, L. Hou, Z. Zhu, and Y.-Y. Wang (2020). Inorg. Chem. Front. 7, 1957.

    Article  CAS  Google Scholar 

  14. X. Wang, Y. Liu, H. Lin, N. Xu, G. Liu, X. Wang, Z. Chang, and J. Li (2020). CrystEngComm 22, 6626.

    Article  CAS  Google Scholar 

  15. L. Wang, G. L. Fan, X. F. Xu, D. M. Chen, L. Wang, W. Shi, and P. Cheng (2017). J. Mater. Chem. A 5, 5541.

    Article  CAS  Google Scholar 

  16. X.-Y. Li, Y.-Z. Li, L.-N. Ma, L. Hou, C.-Z. He, Y.-Y. Wang, and Z. Zhu (2020). J. Mater. Chem. A 8, 5227.

    Article  CAS  Google Scholar 

  17. Y. Yang, K.-Z. Wang, and D. Yan (2017). Chem. Commun. 53, 7752.

    Article  CAS  Google Scholar 

  18. H. Y. Li, Y. L. Wei, X. Y. Dong, S. Q. Zang, and T. C. W. Mak (2015). Chem. Mater. 27, 1327.

    Article  CAS  Google Scholar 

  19. M. Lei, X. Wang, Y. Shi, and Q. Zhang (2020). J. Cluster Sci. 31, 347.

    Article  CAS  Google Scholar 

  20. J. Wang, N.-N. Chen, C. Zhang, L.-Y. Jia, and L. Fan (2020). CrystEngComm 22, 811.

    Article  CAS  Google Scholar 

  21. L. Fan, Z. Liu, Y. Zhang, F. Wang, D. Zhao, J. Yang, and X. Zhang (2019). New J. Chem. 43, 13349.

    Article  CAS  Google Scholar 

  22. G. C. Liu, Y. Li, J. Chi, N. Xu, X. L. Wang, H. Y. Lin, and Y. Q. Chen (2020). Dye Pigments 174, 108064.

    Article  CAS  Google Scholar 

  23. J.-X. Li and Z.-X. Du (2020). J. Cluster Sci. 31, 507.

    Article  CAS  Google Scholar 

  24. J. Wang, L. Gao, J. Zhang, L. Zhao, X. Wang, X. Niu, L. Fan, and T. Hu (2019). Cryst. Growth Des. 19, 630.

    Article  CAS  Google Scholar 

  25. J. Zhang, L. Huo, X. Wang, K. Fang, L. Fan, and T. Hu (2017). Cryst. Growth Des. 17, 5887.

    Article  CAS  Google Scholar 

  26. L. Fan, F. Wang, D. Zhao, Y. Peng, Y. Deng, Y. Luo, and X. Zhang (2020). Appl. Organomet. Chem. 34, e5960.

    Article  CAS  Google Scholar 

  27. J. Wang, N.-N. Chen, J. Qiao, X.-R. Chen, X.-Y. Zhang, and L. Fan (2020). CrystEngComm 22, 6195.

    Article  CAS  Google Scholar 

  28. L. Fan, Y. Zhang, J. Liang, X. Wang, H. Lv, J. Wang, L. Zhao, and X. Zhang (2018). CrystEngComm 20, 4752.

    Article  CAS  Google Scholar 

  29. L. Fan, L. Zhao, J. Wang, H. Lv, Y. Zhang, T. Hu, and X. Zhang (2018). J. Solid State Chem. 266, 189.

    Article  CAS  Google Scholar 

  30. G. M. Sheldrick (2015). Acta Crystallogr. A 71, 3.

    Article  Google Scholar 

  31. V. A. Blatov, A. P. Shevchenko, and V. N. Serezhkin (2000). J. Appl. Crystallogr. 33, 1193.

    Article  CAS  Google Scholar 

  32. L. Fan, W. Fan, B. Li, X. Zhao, and X. Zhang (2015). CrystEngComm 17, 9413.

    Article  CAS  Google Scholar 

  33. Y.-J. Yang, Y.-H. Li, D. Liu, and G.-H. Cui (2020). CrystEngComm 22, 1166.

    Article  CAS  Google Scholar 

  34. B.-Q. Ji, H.-F. Su, M. M. Jagodič, Z. Jagličić, M. Kurmoo, X.-P. Wang, C.-H. Tung, Z.-Z. Cao, and D. Sun (2019). Inorg. Chem. 58, 3800.

    Article  CAS  PubMed  Google Scholar 

  35. X. G. Yang, X. M. Lu, Z. M. Zhai, Y. Zhao, X. Y. Liu, L. F. Ma, and S. Q. Zang (2019). Chem. Commun. 55, 11099.

    Article  CAS  Google Scholar 

  36. D. K. Singha, P. Majee, S. Hui, S. K. Mondal, and P. Mahata (2020). Dalton Trans. 49, 829.

    Article  CAS  PubMed  Google Scholar 

  37. J. Zhang, L. Gao, Y. Wang, L. Zhai, X. Niu, and T. Hu (2019). CrystEngComm 21, 7286.

    Article  CAS  Google Scholar 

  38. Y. Zhang, J. Yang, D. Zhao, Z. Liu, D. Li, L. Fan, and T. Hu (2019). CrystEngComm 21, 6130.

    Article  CAS  Google Scholar 

  39. Z. Zhou, M. L. Han, H. R. Fu, L. F. Ma, F. Luo, and D. S. Li (2018). Dalton Trans. 47, 5359.

    Article  CAS  PubMed  Google Scholar 

  40. Q. Q. Zhu, H. He, Y. Yan, J. Yuan, D. Lu, D. Y. Zhang, F. Sun, and G. Zhu (2019). Inorg. Chem. 58, 7746.

    Article  PubMed  Google Scholar 

  41. L. Fan, F. Wang, D. Zhao, X. Sun, H. Chen, H. Wang, and X. Zhang (2020). Spectrochim. Acta A 239, 118467.

    Article  CAS  Google Scholar 

  42. X. Mi, D. Sheng, Y. Yu, Y. Wang, L. Zhao, J. Lu, Y. Li, D. Li, J. Dou, J. Duan, and S. Wang (2019). ACS Appl. Mater. Interfaces 11, 7914.

    Article  CAS  PubMed  Google Scholar 

  43. H.-M. He, Q.-Q. Zhu, C.-P. Li, and M. Du (2019). Cryst. Growth Des. 19, 694.

    Article  CAS  Google Scholar 

  44. X. X. Jia, R. X. Yao, F. Q. Zhang, and X. M. Zhang (2017). Inorg. Chem. 56, 2690.

    Article  CAS  PubMed  Google Scholar 

  45. X.-G. Liu, C.-L. Tao, H.-Q. Yu, B. Chen, Z. Liu, G.-P. Zhu, Z. Zhao, L. Shen, and B. Z. Tang (2018). J. Mater. Chem. C 6, 2983.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21801230), Natural Science Foundation of Shanxi Province (No. 201801D0221084), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2019L0510), Young Academic Leader Supported Program of North University of China (No. QX201904), and the Opening Foundation of Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education (No. 2020-LISKFJJ-002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liming Fan or Yulan Niu.

Ethics declarations

Conflict of interest

All authors express that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Hao, X., Zhai, L. et al. A Mixed Ligands Strategy Based Luminescent Binuclear Cadmium(II) Coordination Polymer as Chemo-sensor in the Detection of Nitrofurantoin Antibiotic in Water. J Clust Sci 33, 293–300 (2022). https://doi.org/10.1007/s10876-020-01975-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01975-5

Keywords

Navigation