Skip to main content

Advertisement

Log in

Molecular Simulation Study of Gold Clusters for Transporting of Thioguanine Anticancer Drug in Aqueous Solution

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

To show the potential application of gold clusters as a drug delivery system, simulation results of thioguanine interaction with Aun clusters in water were discussed in this research. First, quantum mechanical calculations were used to model Aun clusters (n = 3–6), thioguanine, and thioguanine-Aun complexes, and then to investigate their properties in the aqueous medium, Monte Carlo simulations were conducted. Gas-phase calculations showed a moderately higher binding energy for thioguanine-Au3, compare to the other ones. Monte Carlo simulation results revealed that the electrostatic interactions significantly contribute to solute-water interactions in thioguanine-Aun solutions, and conversely, Van der Waals interactions are favored in Aun clusters. Free energy calculations indicated that the associated free energy is enhanced by growing the cluster size, and Au6 is an acceptable candidate for carrying thioguanine among studied clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Kostarelos (2003). Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Advances in Colloid and Interface Science 106, 147–168.

    Article  CAS  PubMed  Google Scholar 

  2. M. Ferrari (2005). Cancer nanotechnology: opportunities and challenges. Nature Reviews Cancer 5, 161.

    Article  CAS  PubMed  Google Scholar 

  3. H.-G. Boyen, G. Kästle, F. Weigl, B. Koslowski, C. Dietrich, P. Ziemann, J. P. Spatz, S. Riethmüller, C. Hartmann, and M. Möller (2002). Oxidation-resistant gold-55 clusters. Science 297, 1533–1536.

    Article  CAS  PubMed  Google Scholar 

  4. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed (2005). Chemistry and properties of nanocrystals of different shapes. Chemical Reviews 105, 1025–1102.

    Article  CAS  PubMed  Google Scholar 

  5. C. A. Fernandez and C. W. Wai (2006). A simple and rapid method of making 2D and 3D arrays of gold nanoparticles. Journal of Nanoscience and Nanotechnology 6, 669–674.

    Article  CAS  PubMed  Google Scholar 

  6. J. S. Yu, M. Kim, S. Kim, D. H. Ha, B. H. Chung, S. J. Chung, and J.-S. Yu (2008). Characteristics of localized surface plasmon resonance of nanostructured Au patterns for biosensing. Journal of Nanoscience and Nanotechnology 8, 4548–4552.

    Article  CAS  PubMed  Google Scholar 

  7. J. Wang (2000). Survey and summary: From DNA biosensors to gene chips. Nucleic Acids Research 28, 3011–3016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. H.-J. Kim, S.-H. Choi, S.-H. Oh, J.-C. Woo, and I. K. Kim (2008). Horseradish peroxidase immobilized on poly (thiophene-2-aminophenol-3-thiopheneacetic acid) film electrode with Au nanoparticle-fabrication and evaluation as hydrogen peroxide sensor. Journal of nanoscience and nanotechnology 8, 4962–4967.

    Article  CAS  PubMed  Google Scholar 

  9. A. Kumar, P. Mishra, and S. Suhai (2006). Binding of Gold Clusters with DNA Base Pairs: A Density Functional Study of Neutral and Anionic GC− Au n and AT− Au n (n= 4, 8) Complexes. The Journal of Physical Chemistry A 110, 7719–7727.

    Article  CAS  PubMed  Google Scholar 

  10. M. K. Shukla, M. Dubey, E. Zakar, and J. Leszczynski (2009). DFT Investigation of the Interaction of Gold Nanoclusters with Nucleic Acid Base Guanine and the Watson− Crick Guanine-Cytosine Base Pair. The Journal of Physical Chemistry C 113, 3960–3966.

    Article  CAS  Google Scholar 

  11. N. Vyas and A. K. Ojha (2012). Interaction of gold nanoclusters of different size with adenine: A density functional theory study of neutral, anionic and cationic forms of [adenine+(Au) n= 3, 6, 9, 12] complexes. Computational and Theoretical Chemistry 984, 93–101.

    Article  CAS  Google Scholar 

  12. L. Zhang, T. Ren, L. Zhou, J. Tian, and X. Li (2013). DFT investigation of the intermolecular interactions of a thieno-separated tricyclic guanine analog with gold nanoclusters. Computational and Theoretical Chemistry 1019, 1–10.

    Article  CAS  Google Scholar 

  13. Y. C. Cao, R. Jin, and C. A. Mirkin (2002). Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540.

    Article  CAS  PubMed  Google Scholar 

  14. S. Mandal, S. Phadtare, and M. Sastry (2005). Interfacing biology with nanoparticles. Current Applied Physics 5, 118–127.

    Article  Google Scholar 

  15. Y. Shao, Y. Jin, S. Dong, Synthesis of gold nanoplates by aspartate reduction of gold chloride, Chemical Communications (2004) 1104–1105.

  16. A. Calzolari, G. Cicero, C. Cavazzoni, R. Di Felice, A. Catellani, and S. Corni (2010). Hydroxyl-rich β-sheet adhesion to the gold surface in water by first-principle simulations. Journal of the American Chemical Society 132, 4790–4795.

    Article  CAS  PubMed  Google Scholar 

  17. F. Iori and S. Corni (2008). Including image charge effects in the molecular dynamics simulations of molecules on metal surfaces. Journal of computational chemistry 29, 1656–1666.

    Article  CAS  PubMed  Google Scholar 

  18. R. Di Felice and A. Selloni (2004). Adsorption modes of cysteine on Au (111): Thiolate, amino-thiolate, disulfide. The Journal of chemical physics 120, 4906–4914.

    Article  PubMed  Google Scholar 

  19. R. R. Nazmutdinov, J. Zhang, T. T. Zinkicheva, I. R. Manyurov, and J. Ulstrup (2006). Adsorption and in situ scanning tunneling microscopy of cysteine on Au (111): Structure, energy, and tunneling contrasts. Langmuir 22, 7556–7567.

    Article  CAS  PubMed  Google Scholar 

  20. R. Masrour and A. Jabar (2017). Localized spin modes of decorated magnetic clusters on a magnetic surface. Journal of Cluster Science 28, 1443–1452.

    Article  CAS  Google Scholar 

  21. A. Jabar and R. Masrour (2018). Magnetic Properties of the Triangular Lattice with Different Clusters: A Monte Carlo Study. Journal of Cluster Science 29, 599–603.

    Article  CAS  Google Scholar 

  22. R. Masrour, A. Jabar, L. Bahmad, E. Hlil, M. Hamedoun, A. Benyoussef, A. Hourmatallah, N. Benzakour, A. Rezzouk, K. Bouslykhane, Magnetic Properties of Mn 3 ZnN Anti-perovskite Nanoparticles: A Monte Carlo Simulations, Journal of Cluster Science (2020) 1–4.

  23. R. Masrour, A. Jabar, A. Benyoussef, and M. Hamedoun (2018). Magnetic properties of cluster dendrimers of core/shell with mixed spins σ= 3/2 and S= 2: A Monte Carlo study. Chemical Physics Letters 691, 199–205.

    Article  CAS  Google Scholar 

  24. S. Ketabi and T. Esteshfai (2015). Computer Simulation Study of the Interactions Between Gold Clusters and Glutamate in Aqueous Solution. Journal of Solution Chemistry 44, 2027–2041.

    Article  CAS  Google Scholar 

  25. R. De Bruyne, B. Portmann, M. Samyn, S. Bansal, A. Knisely, G. Mieli-Vergani, and A. Dhawan (2006). Chronic liver disease related to 6-thioguanine in children with acute lymphoblastic leukaemia. Journal of hepatology 44, 407–410.

    Article  PubMed  Google Scholar 

  26. G. B. Elion, W. H. Lange, and G. H. Hitchings (1956). Studies on Condensed Pyrimidine Systems. XVI. Purines and Thiazolo [5, 4-d] pyrimidines from 4-Amino-5-formamido-6-mercaptopyrimidines. Journal of the American Chemical Society 78, 2858–2863.

    Article  CAS  Google Scholar 

  27. D. O. Harms, U. Göbel, H. J. Spaar, U. B. Graubner, N. Jorch, P. Gutjahr, and G. E. Janka-Schaub (2003). Thioguanine offers no advantage over mercaptopurine in maintenance treatment of childhood ALL: results of the randomized trial COALL-92. Blood 102, 2736–2740.

    Article  CAS  PubMed  Google Scholar 

  28. N. Erb, D. O. Harms, and G. Janka-Schaub (1998). Pharmacokinetics and metabolism of thiopurines in children with acute lymphoblastic leukemia receiving 6-thioguanine versus 6-mercaptopurine. Cancer chemotherapy and pharmacology 42, 266–272.

    Article  CAS  PubMed  Google Scholar 

  29. Y.-J. Hu, Y. Liu, W. Jiang, R.-M. Zhao, and S.-S. Qu (2005). Fluorometric investigation of the interaction of bovine serum albumin with surfactants and 6-mercaptopurine. Journal of Photochemistry and Photobiology B: Biology 80, 235–242.

    Article  CAS  Google Scholar 

  30. M. Ishtikhar, A. Khan, C.-K. Chang, L.T.-W. Lin, S.S.-S. Wang, and R. H. Khan (2016). Effect of Guanidine hydrochloride and Urea on the interaction of 6-thioguanine with human serum albumin: A spectroscopic and molecular dynamics based study. Journal of Biomolecular Structure and Dynamics 34, 1409–1420.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Kato, T. Matsushita, T. Yokoyama, and K. Mohri (1992). Enhanced bioavailability of 6-mercaptopurine after rectal administration in rats. Pharmaceutical research 9, 697–699.

    Article  CAS  PubMed  Google Scholar 

  32. L. M. Iwaniec, J. J. Kroll, W. M. Roethel, and J. Maybaum (1991). Selective inhibition of sequence-specific protein-DNA interactions by incorporation of 6-thioguanine: cleavage by restriction endonucleases. Molecular pharmacology 39, 299–306.

    CAS  PubMed  Google Scholar 

  33. S. Ahmadi, M. R. Khazaei, and A. Abdolmaleki (2014). Quantitative structure–property relationship study on the intercalation of anticancer drugs with ct-DNA. Medicinal Chemistry Research 23, 1148–1161.

    Article  CAS  Google Scholar 

  34. D. M. Tidd and A. R. Paterson (1974). A biochemical mechanism for the delayed cytotoxic reaction of 6-mercaptopurine. Cancer Research 34, 738–746.

    CAS  PubMed  Google Scholar 

  35. P. Karran and N. Attard (2008). Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nature Reviews Cancer 8, 24–36.

    Article  CAS  PubMed  Google Scholar 

  36. P. N. Munshi, M. Lubin, and J. R. Bertino (2014). 6-thioguanine: a drug with unrealized potential for cancer therapy. The oncologist 19, 760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. N. Issaeva, H. D. Thomas, T. Djurenovic, J. E. Jaspers, I. Stoimenov, S. Kyle, N. Pedley, P. Gottipati, R. Zur, and K. Sleeth (2010). 6-thioguanine selectively kills BRCA2-defective tumors and overcomes PARP inhibitor resistance. Cancer research 70, 6268–6276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. S.-J. Chuang, S.-C. Cheng, H.-C. Tang, C.-Y. Sun, and C.-Y. Chou (2018). 6-Thioguanine is a noncompetitive and slow binding inhibitor of human deubiquitinating protease USP2. Scientific reports 8, 1–9.

    Article  Google Scholar 

  39. S. S. Jacobs, L. C. Stork, B. C. Bostrom, R. Hutchinson, J. Holcenberg, G. H. Reaman, G. Erdmann, J. Franklin, J. P. Neglia, and S. M. Steinberg (2007). Substitution of oral and intravenous thioguanine for mercaptopurine in a treatment regimen for children with standard risk acute lymphoblastic leukemia: A collaborative Children’s Oncology Group/National Cancer Institute pilot trial (CCG-1942). Pediatric Blood & Cancer 49, 250–255.

    Article  Google Scholar 

  40. B.A. Chabner, D.L. Longo, Cancer chemotherapy and biotherapy: principles and practice, Lippincott Williams & Wilkins2011.

  41. M.A. Smith, L.G. Ries, J.G. Gurney, M.L. Bondy, S.E. Plon, D. Malkin, A.T. Look, I.R. Kirsch, C.J. Thiele, M.B. Kastan, Principles and practice of pediatric oncology, Edited by: Pizzo PAPoplack GD, 2002.

  42. H. Karim, A. Ghalali, P. Lafolie, S. Vitols, and A. K. Fotoohi (2013). Differential role of thiopurine methyltransferase in the cytotoxic effects of 6-mercaptopurine and 6-thioguanine on human leukemia cells. Biochemical and biophysical research communications 437, 280–286.

    Article  CAS  PubMed  Google Scholar 

  43. S. D. Brown, P. Nativo, J.-A. Smith, D. Stirling, P. R. Edwards, B. Venugopal, D. J. Flint, J. A. Plumb, D. Graham, and N. J. Wheate (2010). Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. Journal of the American Chemical Society 132, 4678–4684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. B. Wang and J. M. Rosano (2010). Towards a targeted multi-drug delivery approach to improve therapeutic efficacy in breast cancer. Expert opinion on drug delivery 7, 1159–1173.

    Article  CAS  PubMed  Google Scholar 

  45. S. Ketabi and L. Rahmani (2017). Carbon nanotube as a carrier in drug delivery system for carnosine dipeptide: A computer simulation study. Materials Science and Engineering: C 73, 173–181.

    Article  CAS  Google Scholar 

  46. S. Roosta, S. M. Hashemianzadeh, and S. Ketabi (2016). Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation. Materials Science and Engineering: C 67, 98–103.

    Article  CAS  Google Scholar 

  47. S. Ketabi, S. M. Hashemianzadeh, and M. MoghimiWaskasi (2013). Study of DNA base-Li doped SiC nanotubes in aqueous solutions: a computer simulation study. Journal of molecular modeling 19, 1605–1615.

    Article  CAS  PubMed  Google Scholar 

  48. H. Häkkinen, B. Yoon, U. Landman, X. Li, H.-J. Zhai, and L.-S. Wang (2003). On the Electronic and Atomic Structures of Small Au N-(N= 4–14) Clusters: A Photoelectron Spectroscopy and Density-Functional Study. The Journal of Physical Chemistry A 107, 6168–6175.

    Article  Google Scholar 

  49. L. Xiao and L. Wang (2004). From planar to three-dimensional structural transition in gold clusters and the spin–orbit coupling effect. Chemical physics letters 392, 452–455.

    Article  CAS  Google Scholar 

  50. A. D. Becke (1993). A new mixing of Hartree-Fock and local density-functional theories. The Journal of chemical physics 98, 1372–1377.

    Article  CAS  Google Scholar 

  51. C. Lee, W. Yang, and R. G. Parr (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B 37, 785.

    Article  CAS  Google Scholar 

  52. G. Petersson, M.A. Al‐Laham, A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms, The Journal of chemical physics 94 (1991) 6081–6090.

  53. a. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al‐Laham, W.A. Shirley, J. Mantzaris, A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements, The Journal of chemical physics 89 (1988) 2193–2218.

  54. T.H. Dunning Jr, P.J. Hay, Modern theoretical chemistry, (1976).

  55. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, and S. Su (1993). General atomic and molecular electronic structure system. Journal of computational chemistry 14, 1347–1363.

    Article  CAS  Google Scholar 

  56. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein (1983). Comparison of simple potential functions for simulating liquid water. The Journal of chemical physics 79, 926–935.

    Article  CAS  Google Scholar 

  57. W.L. Jorgensen, Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water, J. Am. Chem. Soc.;(United States) 103 (1981).

  58. A. K. Rappé, C. J. Casewit, K. Colwell, W. A. Goddard III., and W. M. Skiff (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American chemical society 114, 10024–10035.

    Article  Google Scholar 

  59. J. Aqvist (1990). Ion-water interaction potentials derived from free energy perturbation simulations. The Journal of Physical Chemistry 94, 8021–8024.

    Article  Google Scholar 

  60. J. Pranata, S. G. Wierschke, and W. L. Jorgensen (1991). OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform, Journal of the American Chemical Society 113, 2810–2819.

    CAS  Google Scholar 

  61. J.-P. Hansen, I.R. McDonald, Theory of simple liquids, Elsevier1990.

  62. D. L. Beveridge and F. DiCapua (1989). Free energy via molecular simulation: applications to chemical and biomolecular systems. Annual review of biophysics and biophysical chemistry 18, 431–492.

    Article  CAS  PubMed  Google Scholar 

  63. W. L. Jorgensen, J. K. Buckner, S. Boudon, and J. Tirado-Rives (1988). Efficient computation of absolute free energies of binding by computer simulations. Application to the methane dimer in water, The Journal of chemical physics 89, 3742–3746.

    CAS  Google Scholar 

  64. R. L. Andrew, Molecular modeling principles and applications (Prentice Hall, London, 2001).

    Google Scholar 

  65. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953). Equation of state calculations by fast computing machines. The journal of chemical physics 21, 1087–1092.

    Article  CAS  Google Scholar 

  66. L. Xiao, B. Tollberg, X. Hu, and L. Wang (2006). Structural study of gold clusters. The Journal of chemical physics 124, 114309.

    Article  PubMed  Google Scholar 

  67. S.F. Boys, F.d. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Molecular Physics 19 (1970) 553–566.

  68. L. Zhang, T. Ren, X. Yang, L. Zhou, and X. Li (2013). Intermolecular interactions of a size-expanded guanine analogue with gold nanoclusters. International Journal of Quantum Chemistry 113, 2234–2242.

    Article  CAS  Google Scholar 

  69. H. Karimi-Maleh, A. Fallah Shojaei, F. Karimi, K. Tabatabaeian, S. Shakeri, Au nanoparticle loaded with 6-thioguanine anticancer drug as a new strategy for drug delivery, Journal of Nanostructures 8 (2018) 217–424.

  70. P. Podsiadlo, V. A. Sinani, J. H. Bahng, N. W. S. Kam, J. Lee, and N. A. Kotov (2008). Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir 24, 568–574.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Ketabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketabi, S., Gholipour, F. & Naderi, M. Molecular Simulation Study of Gold Clusters for Transporting of Thioguanine Anticancer Drug in Aqueous Solution. J Clust Sci 33, 135–143 (2022). https://doi.org/10.1007/s10876-020-01974-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01974-6

Keywords

Navigation