Sinapic Acid Loaded Secondary Growth of SiO2–Au Core Shell Nanostructure as an Effective Antiarthritic Agent to Treat Collagen-Induced Arthritis

Abstract

Systemic autoimmune disease of rheumatoid arthritis (RA) is a severe case of joint deformity. Serious off-targeted drugs are not capable of curing RA and lead to increased risk of infection. Nanoparticles-based arthritis therapy is a promising approach to promote effective treatment strategy in inflammatory tissues. In particular, an inorganic-metal hybrid form of core–shell nanostructure has a significant role in the drug application due to its unique properties arising from either core or shell materials. Presently, the Au–SiO2 core–shell nanomaterials with an average diameter of 78 nm were successfully synthesized. The nanomaterials revealed a very high sinapic acid (SA) loading to eliminate the inflammatory response in RA by avoiding the side effects of conventional drugs. Various characterization techniques revealed that the as-fabricated Au–SiO2 has a higher-contrast core and aggregates of SiO2 on their surfaces/of the shell. Besides, Au–SiO2 core–shell exhibits the large extended pore structure to store a large quantity of SA drugs. Then, the mice were treated with different doses of SA loaded Au–SiO2 core–shell to assess the various biochemical parameters, including body weight, arthritic score analysis, hind paw volume, organ indices measurement, histological analysis pro-inflammatory cytokines, and anti-serum antibody analysis. The obtained results have proven that SiO2–Au develop a core–shell skin structure and each with its unique SA loading might act as a potential anti-inflammatory agent, which can be effectively used to treat collagen-induced arthritis compared to Au–SiO2 and SA. Therefore, SA loaded Au–SiO2 core–shell nanomaterials might employ as an interesting candidate in future arthritis applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    D. L. Scott, F. Wolfe, and T. W. Huizinga (2010). Lancet 376, 1094–1108.

    Article  Google Scholar 

  2. 2.

    N. Bottini and G. S. Firestein (2013). Curr. Rheumatol. Rep. 15, 372.

    Article  Google Scholar 

  3. 3.

    M. Mousavi, H. Karimzadeh, B. Pakzad, and F. Mirrokni (2019). Adv. Biomed. Res. 8.

  4. 4.

    F. Zeng, Y. Wu, X. Li, X. Ge, Q. Guo, X. Lou, Z. Cao, B. Hu, N.J. Long, Y. Mao, and C. Li (2018). AngewandteChemie. 130, 5910–5914.

  5. 5.

    P. Verschueren, D. De Cock, L. Corluy, R. Joos, C. Langenaken, V. Taelman, F. Raeman, I. Ravelingien, K. Vandevyvere, J. Lenaerts, and E. Geens (2015). Ann. Rheumat. Dis. 74, 27–34.

  6. 6.

    S. M. Lee, H. J. Kim, Y. J. Ha, Y. N. Park, S. K. Lee, Y. B. Park, and K. H. Yoo (2012). ACS Nano 7, 50–57.

    Article  Google Scholar 

  7. 7.

    M. W. Whitehouse (2011). Inflammopharmacology 19, 1–19.

    CAS  Article  Google Scholar 

  8. 8.

    L. D. Quan, G. M. Thiele, J. Tian, and D. Wang (2008). Exp. Opin. Therap. Patents 18, 723–738.

    CAS  Article  Google Scholar 

  9. 9.

    S. Dudics, D. Langan, R. R. Meka, S. H. Venkatesha, B. M. Berman, C. T. Che, and K. D. Moudgil (2018). Intl. J. Mol. Sci. 19, 2508.

    Article  Google Scholar 

  10. 10.

    R. Ginwala, R. Bhavsar, D. G. I. Chigbu, P. Jain, and Z. K. Khan (2019). Antioxidants 8, 35.

    Article  Google Scholar 

  11. 11.

    O. Firuzi, L. Giansanti, R. Vento, C.,Seibert, R. Petrucci, G. Marrosu, R. Agostino, and L. Saso (2003). J. Pharm. Pharmacol. 55, 1021–1027.

  12. 12.

    N. Nićiforović and H. Abramovič (2014). Compr. Rev. Food Sci. Food Saf. 13, 34–51.

    Article  Google Scholar 

  13. 13.

    E. A. Hudson, P. A. Dinh, T. Kokubun, M. S. Simmonds, and A. Gescher (2000). Cancer Epidemiol. Prev. Biomark. 9, 1163–1170.

    CAS  Google Scholar 

  14. 14.

    T. Silambarasan, J. Manivannan, B. Raja, and S. Chatterjee (2016). Eur. J. Pharmacol. 777, 113–123.

    CAS  Article  Google Scholar 

  15. 15.

    X. Huang, Q. Pan, Z. Mao, R. Zhang, X. Ma, Y. Xi, and H. You (2018). Inflammation 41, 562–568.

    CAS  Article  Google Scholar 

  16. 16.

    P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh (2011). Nanomaterials 1, 31–63.

    CAS  Article  Google Scholar 

  17. 17.

    M.K., Otoufi, N., Shahtahmasebi, A., Kompany, E.K. Goharshadi, and A. Roghani (2014). J. Clust. Sci. 25, 1307–1317.

  18. 18.

    A. Ganguli, and A. Ganguly (2009). J. Clust. Sci. 20, 417–427.

  19. 19.

    L. Xing, H. Zheng, Y. Cao, and S. Che (2012). Adv Mater. 24, 6433–6437.

    CAS  Article  Google Scholar 

  20. 20.

    X. Li, S. Lu, Z. Xiong, Y. Hu, D. Ma, W. Lou, C. Peng, M. Shen, and X. Shi (2019). Adv. Sci. 1901800.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanpeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, Q., Wang, Y. Sinapic Acid Loaded Secondary Growth of SiO2–Au Core Shell Nanostructure as an Effective Antiarthritic Agent to Treat Collagen-Induced Arthritis. J Clust Sci (2021). https://doi.org/10.1007/s10876-020-01973-7

Download citation

Keywords

  • SiO2–Au core/shell
  • Rheumatoid arthritis
  • Collagen-induced arthritis
  • Sinaptic acid