Skip to main content
Log in

Synthesis and Characterization of Chitosan/Silver Nanocomposite Using Rutin for Antibacterial, Antioxidant and Photocatalytic Applications

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study reports an eco-friendly synthesis of chitosan/silver (CS/Ag) nanocomposite using rutin by a bio-inspired method. The formation of brown color and UV–visible absorbance peak at 415 nm confirmed the synthesis of CS/Ag nanocomposite. X-ray diffraction (XRD) analysis revealed the crystalline peaks of both chitosan and silver in synthesized CS/Ag nanocomposite. Field emission-scanning electron microscopy (FE-SEM) analysis showed that the synthesized CS/Ag nanocomposite having predominant spherical shaped nanostructure with an average size of 23–78 nm. Fourier transform infrared spectroscopy (FTIR) analysis indicated the presence of functional derivatives related to chitosan and rutin in CS/Ag nanocomposite. Synthesized CS/Ag nanocomposite exhibited superior disc diffusion antibacterial activity against Bacillus subtilis and Escherichia coli. The in vitro antioxidant of CS/Ag nanocomposite was evaluated spectrophotometrically by using DPPH method. The percentage of antioxidant activity was increased with increasing concentration of CS/Ag nanocomposite. Furthermore, photocatalytic activity of CS/Ag nanocomposite was evaluated by the removal of methylene blue (MB) dye from aqueous solution under sunlight irradiation. Results showed that the degradation efficiency of MB reached up to 88% after irradiation for 220 min. Thus, the obtained results indicated that the synthesized CS/Ag nanocomposite using rutin can be a promising nanomaterial for multifunctional applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Hasanpour and M. Hatami (2020). J. Mol. Liq. 309, 113094.

    CAS  Google Scholar 

  2. S. Samsami, M. Mohamadi, M. H. Sarrafzadeh, E. R. Rene, and M. Firoozbahr (2020). Process Saf. Environ. 143, 138–163.

    CAS  Google Scholar 

  3. M. A. Islam, I. Ali, S. A. Karim, M. S. Firoz, A. N. Chowdhury, D. W. Morton, and M. J. Angove (2019). J. Water Process Eng. 32, 100911.

    Google Scholar 

  4. A. Tkaczyk, K. Mitrowska, and A. Posyniak (2020). Sci. Total Environ. 717, 137222.

    CAS  PubMed  Google Scholar 

  5. S. Benkhaya, S. Mrabet, and A. El Harfi (2020). Inorg. Chem. Commun. 115, 107891.

    CAS  Google Scholar 

  6. E. Alventosa-deLara, S. Barredo-Damas, M. I. Alcaina-Miranda, and M. I. Iborra-Clar (2012). J. Hazard. Mater. 209, 492–500.

    PubMed  Google Scholar 

  7. M. F. Abid, M. A. Zablouk, and A. M. Abid-Alameer (2012). J. Environ. Health Sci. Eng. 9, 17.

    Google Scholar 

  8. S. Marimuthu, A. J. Antonisamy, S. Malayandi, K. Rajendran, P. C. Tsai, A. Pugazhendhi, and V. K. Ponnusamy (2020). J. Photochem. Photobiol. B. 205, 111823.

    CAS  PubMed  Google Scholar 

  9. Y. Liu, Z. Liu, D. Huang, M. Cheng, G. Zeng, C. Lai, C. Zhang, C. Zhou, W. Wang, D. Jiang, and H. Wang (2019). Coord. Chem. Rev. 388, 63.

    CAS  Google Scholar 

  10. H. Luo, Z. Zeng, G. Zeng, C. Zhang, R. Xiao, D. Huang, C. Lai, M. Cheng, W. Wang, W. Xiong, and Y. Yang (2020). Chem. Eng. J. 138, 123196.

    Google Scholar 

  11. M. Nasrollahzadeh, M. Sajjadi, S. Iravani, and R. S. Varma (2021). J. Hazard. Mater. 401, 123401.

    CAS  PubMed  Google Scholar 

  12. S. P. Deshmukh, S. M. Patil, S. B. Mullani, and S. D. Delekar (2019). Mater. Sci. Eng. C. 97, 954–965.

    CAS  Google Scholar 

  13. D. Baruah, R. N. Yadav, A. Yadav, and A. M. Das (2019). J. Photochem. Photobiol. B. 201, 111649.

    CAS  PubMed  Google Scholar 

  14. Z. Liu, Y. Wang, Y. Zu, Y. Fu, N. Li, N. Guo, and Y. Zhang (2014). Mat. Sci. Eng. C 42, 31–37.

    Google Scholar 

  15. G. Suriati, M. Mariatti, and A. Azizan (2014). Int. J. Automot. Mech. Eng. 10, 1920.

    CAS  Google Scholar 

  16. R. A. Khaydarov, R. R. Khaydarov, O. Gapurova, Y. Estrin, and T. Scheper (2009). J. Nano. Res. 11, 1193.

    CAS  Google Scholar 

  17. S. Perugu, V. Nagati, and M. Bhanoori (2016). App. Nanosci. 6, 747.

    CAS  Google Scholar 

  18. R. Banasiuk, M. Krychowiak, D. Swigon, W. Tomaszewicz, A. Michalak, A. Chylewska, M. Ziabka, M. Lapinski, B. Koscielska, M. Narajczyk, and A. Krolicka (2020). Arab. J. Chem. 13, 1415.

    CAS  Google Scholar 

  19. M. Behravan, A. H. Panahi, A. Naghizadeh, M. Ziaee, R. Mahdavi, and A. Mirzapour (2019). Int. J. Biol. Macromol. 124, 148–154.

    CAS  PubMed  Google Scholar 

  20. K. Ramachandran, D. Kalpana, Y. Sathishkumar, Y. S. Lee, and K. Ravichandran (2016). J. Ind. Eng. Chem. 35, 29–35.

    CAS  Google Scholar 

  21. F. Aygün, M. S. Gülbağça, M. H. Nas, M. H. Alma, B. Çalımlı, B. Ustaoglu, and F. Şen (2020). J. Pharmaceut. Biomed. 179, 113012.

    Google Scholar 

  22. J. S. Pawar and R. H. Patil (2020). SN App. Sci. 2, 52.

    CAS  Google Scholar 

  23. S. Aslany, F. Tafvizi, and V. Naseh (2020). Mater. Today Comm. 24, 101011.

    CAS  Google Scholar 

  24. M. Hamelian, M. M. Zangeneh, A. Shahmohammadi, K. Varmira, and H. Veisi (2020). App. Organomet. Chem. 34, e5278.

    CAS  Google Scholar 

  25. A. A. H. Fernandes, E. L. B. Novelli, K. Okoshi, M. P. Okoshi, B. P. Di Muzio, J. Guimarães, and A. F. Junior (2010). Biomed. Pharmacother. 64, 214.

    PubMed  Google Scholar 

  26. R. Thangam, D. Senthilkumar, V. Suresh, M. Sathuvan, S. Sivasubramanian, K. Pazhanichamy, and J. Sivaraman (2014). J. Agric. Food Chem. 62, 3410.

    CAS  PubMed  Google Scholar 

  27. B. Gullon, T. A. Lú-Chau, M. T. Moreira, J. M. Lema, and G. Eibes (2017). Trends Food Sci. Technol. 67, 220.

    CAS  Google Scholar 

  28. B. Tylkowski, A. Trojanowska, M. Nowak, L. Marciniak, and R. Jastrzab (2017). Phys. Sci. Rev. 19, 20170024.

    Google Scholar 

  29. L. Tamayo, H. Palza, J. Bejarano, and P. A. Zapata, Polymer Composites with Functionalized Nanoparticle. (Elsevier, New York, 2019), p. 249.

    Google Scholar 

  30. A. L. Stepanov, Polymer Composites with Functionalized Nanoparticles. (Elsevier, New York, 2019), p. 325.

    Google Scholar 

  31. N. A. Negm, H. H. Hefni, A. A. Abd-Elaal, and E. A. M. T. H. BadrAbou Kana (2020). Int. J. Biol. Macromol. 152, 681.

    CAS  PubMed  Google Scholar 

  32. P. S. Bakshi, D. Selvakumar, K. Kadirvelu, and N. S. Kumar (2020). Int. J. Biol. Macromol. 150, 1072.

    CAS  PubMed  Google Scholar 

  33. H. B. Quesada, T. P. de Araújo, D. T. Vareschini, M. A. de Barros, R. G. Gomes, and R. Bergamasco (2020). Int. J. Biol. Macromol. 164, 2535–2549.

    CAS  PubMed  Google Scholar 

  34. Z. Khan (2020). Int. J. Biol. Macromol. 153, 545.

    CAS  PubMed  Google Scholar 

  35. A. Balakrishnan, A. Sowmya, and K. Gopalram (2020). Int. J. Biol. Macromol. 161, 282.

    CAS  PubMed  Google Scholar 

  36. A. S. Kritchenkov, A. R. Egorov, A. A. Artemjev, I. S. Kritchenkov, O. V. Volkova, E. I. Kiprushkina, L. A. Zabodalova, E. P. Suchkova, N. Z. Yagafarov, A. G. Tskhovrebov, and A. V. Kurliuk (2020). Int. J. Biol. Macromol. 149, 682.

    CAS  PubMed  Google Scholar 

  37. D. Bharathi, S. Preethi, K. Abarna, M. Nithyasri, P. Kishore, and K. Deepika (2020). Biocatal. Agric. Biotechnol. 27, 101698.

    Google Scholar 

  38. D. Bharathi and V. Bhuvaneshwari (2019). BioNanoSci. 9, 155.

    Google Scholar 

  39. D. Vaidehi, V. Bhuvaneshwari, D. Bharathi, and B. P. Sheetal (2018). Mater. Res. Express. 5, 085403.

    Google Scholar 

  40. S. Vijayakumar, B. Malaikozhundan, A. Parthasarathy, K. Saravanakumar, M. H. Wang, and B. Vaseeharan (2020). J. Clust. Sci. 32, 355.

    Google Scholar 

  41. M. S. Mohseni, M. A. Khalilzadeh, M. Mohseni, F. Z. Hargalani, M. I. Getso, V. Raissi, and O. Raiesi (2020). Biocatal. Agric Biotechnol. 25, 101569.

    Google Scholar 

  42. K. Al-Dhafri and C. L. Ching (2019). Biocatal. Agric Biotechnol. 18, 101075.

    Google Scholar 

  43. M. P. Patil, R. D. Singh, P. B. Koli, K. T. Patil, B. S. Jagdale, A. R. Tipare, and G. D. Kim (2018). Microb. Pathogene. 121, 184.

    CAS  Google Scholar 

  44. P. Senthilkumar, G. Yaswant, S. Kavitha, E. Chandramohan, G. Kowsalya, R. Vijay, B. Sudhagar, and D. R. Kumar (2019). Int. J. Biol. Macromol. 141, 290.

    CAS  PubMed  Google Scholar 

  45. S. W. Ali, S. Rajendran, and M. Joshi (2011). Carbohydr. Polym. 83, 438.

    CAS  Google Scholar 

  46. O. J. Nava, P. A. Luque, C. M. Gómez-Gutiérrez, A. R. Vilchis-Nestor, A. Castro-Beltrán, M. L. Mota-González, and A. Olivas (2017). J. Mol. Struct. 1134, 121.

    CAS  Google Scholar 

  47. O. J. Nava, C. A. Soto-Robles, C. M. Gómez-Gutiérrez, A. R. Vilchis-Nestor, A. Castro-Beltrán, A. Olivas, and P. A. Luque (2017). J. Mol. Struct. 1147, 1.

    CAS  Google Scholar 

  48. A. Parthasarathy, S. Vijayakumar, B. Malaikozhundan, M. P. Thangaraj, P. Ekambaram, T. Murugan, P. Velusamy, P. Anbu, and B. Vaseeharan (2020). Polym. Test. 90, 106675.

    CAS  Google Scholar 

  49. A. Shah, I. Hussain, and G. Murtaza (2018). Int. J. Biol. Macromol. 116, 520.

    CAS  PubMed  Google Scholar 

  50. S. Mohammadi and G. Khayatian (2017). Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 185, 27.

    CAS  Google Scholar 

  51. M. H. Khan, S. Unnikrishnan, and K. Ramalingam (2019). Biocatal. Agric Biotechnol. 18, 100939.

    Google Scholar 

  52. R. I. Priyadharshini, G. Prasannaraj, N. Geetha, and P. Venkatachalam (2014). Appl. Biochem. Biotechnol. 174, 2777.

    CAS  PubMed  Google Scholar 

  53. K. Vimala, Y. M. Mohan, K. S. Sivudu, K. Varaprasad, S. Ravindra, N. N. Reddy, Y. Padma, B. Sreedhar, and K. MohanaRaju (2010). Colloids Surf. B. 76, 248.

    CAS  Google Scholar 

  54. M. A. Asghar, R. I. Yousuf, M. H. Shoaib, and M. A. Asghar (2020). Int. J. Biol. Macromol. 160, 934.

    CAS  PubMed  Google Scholar 

  55. A. Sathiyaseelan, K. Saravanakumar, J. Jayalakshmi, J. Gopi, A. Shajahan, K. Barathikannan, P. T. Kalaichelvan, and M. H. Wang (2020). Int. J. Biol. Macromol. 163, 36.

    CAS  PubMed  Google Scholar 

  56. S. H. Dananjaya, R. S. Kumar, M. Yang, C. Nikapitiya, J. Lee, and M. De Zoysa (2018). Int. J. Biol. Macromol. 108, 1281.

    CAS  PubMed  Google Scholar 

  57. S. Saha and A. Mishra (2020). J. Cryst. Growth. 540, 125635.

    CAS  Google Scholar 

  58. A. Montes, L. Wehner, C. Pereyra, and E. M. De La Ossa (2016). J. Supercrit. Fluid. 118, 1.

    CAS  Google Scholar 

  59. M. A. Hussein, F. G. Baños, M. Grinholc, A. S. Dena, I. M. El-Sherbiny, and M. Megahed (2020). Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.08.046.

    Article  PubMed  Google Scholar 

  60. B. Lunkov, M. Shagdarova, Y. Konovalova, N. Zhuikova, N. A. Drozd, A. Il’ina, and V. Varlamov (2020). Carbohydr. Polym. 234, 115916.

    CAS  PubMed  Google Scholar 

  61. P. Van Viet, T. T. Sang, N. H. Bich, and C. M. Thi (2018). J. Photochem. Photobiol. B Biol. 182, 108.

    CAS  Google Scholar 

  62. S. Sathiyavimal, S. Vasantharaj, D. Bharathi, M. Saravanan, E. Manikandan, S. S. Kumar, and A. Pugazhendhi (2018). J. Photochem. Photobiol. B Biol. 188, 126.

    CAS  Google Scholar 

  63. J. Wongpreecha, D. Polpanich, T. Suteewong, C. Kaewsaneha, and P. Tangboriboonrat (2018). Carbohydr. Polym. 199, 641.

    CAS  PubMed  Google Scholar 

  64. A. M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P. T. Kalaichelvan, and R. Venketesan (2010). Nanomed. Nanotechnol. 6, 103.

    CAS  Google Scholar 

  65. A. Roy, O. Bulut, S. Some, A. K. Mandal, and M. D. Yilmaz (2019). RSC Adv. 9, 2673.

    CAS  Google Scholar 

  66. A. Singh and A. K. Dubey (2018). ACS Appl. Bio Mater. 30, 3.

    Google Scholar 

  67. K. Prabu, A. Rajasekaran, D. Bharathi, and S. Ramalakshmi (2018). J. King Saud Univ. Sci. 1, 220.

    Google Scholar 

  68. X. Zhang, X. Geng, H. Jiang, J. Li, and J. Huang (2012). Carbohydr. Polym. 89, 486.

    CAS  PubMed  Google Scholar 

  69. M. Naeimi, A. Honarmand, and A. Sedri (2019). Ultrasound. Sonochemist. 50, 331.

    CAS  Google Scholar 

  70. Q. Hao, Y. Liu, T. Chen, Q. Guo, W. Wei, and B. J. Ni (2019). ACS Appl. Nano Mater. 2, 2308.

    CAS  Google Scholar 

  71. K. Roy, C. K. Sarkar, and C. K. Ghosh (2015). App. Nanosci. 5, 953.

    CAS  Google Scholar 

  72. S. Sumitha, S. Vasanthi, S. Shalini, S. V. Chinni, S. C. Gopinath, P. Anbu, M. B. Bahari, R. Harish, S. Kathiresan, and V. Ravichandran (2018). Molecules 23, 3311.

    PubMed Central  Google Scholar 

  73. A. Kumar, K. Smita, L. Cumbal, and A. Debut (2016). J. Photochem. Photobiol. B. 158, 55–60.

    CAS  PubMed  Google Scholar 

  74. S. Preethi, K. Abarna, M. Nithyasri, P. Kishore, K. Deepika, R. Ranjithkumar, V. Bhuvaneshwari, and D. Bharathi (2020). Int. J. Biol. Macromol. 164, 2779.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devaraj Bharathi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandana, C.N., Christeena, M. & Bharathi, D. Synthesis and Characterization of Chitosan/Silver Nanocomposite Using Rutin for Antibacterial, Antioxidant and Photocatalytic Applications. J Clust Sci 33, 269–279 (2022). https://doi.org/10.1007/s10876-020-01947-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01947-9

Keywords

Navigation