Skip to main content
Log in

Green Synthesis of Cuprous Oxide Nanoparticles Using Andean Capuli (Prunus serotina Ehrh. var. Capuli) Cherry

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Copper oxide nanoparticles have gained considerable attention in the past two decades due to their simplicity and exhibit a range of potentially useful physical properties. In the present study, a simple, low cost, and environmental friendly synthesis of Cuprous oxide (Cu2O) nanoparticles using Prunus serotina Ehrh. var. Capuli cherry extract has been reported. The phytochemicals of Capuli cherry induce the reduction Cu2+ ions to Cu2O and also act as capping agent. UV–vis spectroscopy technique confirms the formation of Cu2O NPs at λmax = 446.5 nm (energy bandgap = 2.77 eV). Morphology, crystallinity and surface properties of nanoparticles were studied using Scanning transmission electron microscopy (STEM), Dynamic light scattering (DLS), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. STEM and DLS characterization indicated the formation of spherical Cu2O NPs of average size 30–55 nm. The XRD analysis confirmed that as-synthesized Cu2O were face-centered cubic (FCC) crystalline structures. The produced Cu2O nanoparticles exhibited good photocatalytic activity for degradation of Thioflavin T dye (> 60%, 90 min). In future, the present investigation could prove to synthesize nanoparticles in bulk and also for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. K. Lingaraju, H. Raja Naika, K. Manjunath, G. Nagaraju, D. Suresh, and H. Nagabhushana (2015). Rauvolfia serpentina-mediated green synthesis of cuo nanoparticles and its multidisciplinary studies. Acta Metall. Sin. (Engl. Lett.) 28, 1134–1140.

    Article  CAS  Google Scholar 

  2. D. R. Kauffman, P. R. Ohodnicki, B. W. Kail, and C. Matranga (2011). Selective electrocatalytic activity of ligand stabilized copper oxide nanoparticles. J. Phys. Chem. Lett. 2, 2038–2043.

    Article  CAS  Google Scholar 

  3. M. Nasrollahzadeh and S. M. Sajadi (2015). Green synthesis of copper nanoparticles using Ginkgo biloba L leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. J. Colloid Interface Sci. 457, 141–147.

    Article  CAS  Google Scholar 

  4. G. Yin, M. Nishikawa, Y. Nosaka, N. Srinivasan, D. Atarashi, E. Sakai, and M. Miyauchi (2015). Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets. ACS Nano 9, 2111–2119.

    Article  CAS  Google Scholar 

  5. R. V. Gonçalves, R. Wojcieszak, H. Wender, C. S. B. Dias, L. L. R. Vono, D. Eberhardt, S. R. Teixeira, and L. M. Rossi (2015). Easy access to metallic copper nanoparticles with high activity and stability for CO oxidation. ACS Appl. Mater. Interfaces 7, 7987–7994.

    Article  CAS  Google Scholar 

  6. M. Ismail, S. Gul, M. Khan, M. A. Khan, A. M. Asiri, and S. B. Khan (2019). Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes congo red and methyl orange. Green Process. Synth. 8, 135–143.

    Article  CAS  Google Scholar 

  7. J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li (2006). Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 18, 867–871.

    Article  CAS  Google Scholar 

  8. Z. Wang, B. Chen, and A. L. Rogach (2017). Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horizons 2, 135–146.

    Article  CAS  Google Scholar 

  9. X. Guo, C. Hao, G. Jin, H. Y. Zhu, and X. Y. Guo (2014). Copper nanoparticles on graphene support: an efficient photocatalyst for coupling of nitroaromatics in visible light. Angew. Chem. Int. Ed. 63, 1973–1977.

    Article  CAS  Google Scholar 

  10. R. Dastjerdi and M. Montazer (2010). A review on the application of inorganic nanostructured materials in the modification of textiles: Focus on antimicrobial properties. Colloids Surf. B Biointerfaces 79, 5–18.

    Article  CAS  Google Scholar 

  11. S. Jeong, K. Woo, D. Kim, S. Lim, J. Kim, H. Shin, Y. Xia, and J. Moon (2008). Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by Ink-Jet printing. Adv. Funct. Mater. 18, 679–686.

    Article  CAS  Google Scholar 

  12. K. M. Rajesh, B. Ajitha, Y. Ashok Kumar Reddy, Y. Suneetha, and P. Sreedhara Reddy (2018). Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: physical, optical and antimicrobial properties. Optik 154, 593–600.

    Article  CAS  Google Scholar 

  13. S. M. Lomnicki, H. Wu, S. N. Osborne, J. M. Pruett, R. L. McCarley, E. Poliakoff, and B. Dellinger (2010). Size-selective synthesis of immobilized copper oxide nanoclusters on silica. Mater. Sci. Eng. B 175, 136–142.

    Article  CAS  Google Scholar 

  14. A. Trivedi, J. Thakarda, N. Chavda, Y. K. Agrawal, and P. Maity (2016). A new route towards selective synthesis of supported Cu2O and CuO nanoparticles under extremely mild condition. Nano-Struct. Nano-Objects 6, 34–38.

    Article  CAS  Google Scholar 

  15. L. Pan, J.-J. Zou, T. Zhang, S. Wang, Z. Li, L. Wang, and X. Zhang (2014). Cu2O film via hydrothermal redox approach: morphology and photocatalytic performance. J. Phys. Chem. C 118, 16335–16343.

    Article  CAS  Google Scholar 

  16. L. Gou and C. J. Murphy (2002). Solution-phase synthesis of Cu2O nanocubes. Nano Lett. 3, 231–234.

    Article  CAS  Google Scholar 

  17. N. Zayyoun, L. Bahmad, L. Laanab, and B. Jaber (2016). The effect of pH on the synthesis of stable Cu2O/CuO nanoparticles by sol-gel method in a glycolic medium. Appl. Phys. A 122, 488.

    Article  CAS  Google Scholar 

  18. Z. Wang, H. Wang, L. Wang, and L. Pan (2009). Controlled synthesis of Cu2O cubic and octahedral nano- and microcrystals. Cryst. Res. Technol. 44, 624–628.

    Article  CAS  Google Scholar 

  19. G. Shi, Y. Bao, B. Chen, and J. Xu (2017). Phenol hydroxylation over cubic/monoclinic mixed phase CuO nanoparticles prepared by chemical vapor deposition. React. Kinet. Mech. Cat 122, 289–303.

    Article  CAS  Google Scholar 

  20. M. A. Bhosale and B. M. Bhanage (2014). A facile one-step approach for the synthesis of uniform spherical Cu/Cu2O nano- and microparticles with high catalytic activity in the Buchwald-Hartwig amination reaction. RSC Adv. 4, 15122–15130.

    Article  CAS  Google Scholar 

  21. M. A. Bhosale and B. M. Bhanage (2016). A simple approach for sonochemical synthesis of Cu2O nanoparticles with high catalytic properties. Adv. Powd. Technol. 27, 238–244.

    Article  CAS  Google Scholar 

  22. A. Bhattacharjee and M. Ahmaruzzaman (2018). Microwave assisted facile and green route for synthesis of CuO nanoleaves and their efficacy as a catalyst for reduction and degradation of hazardous organic compounds. J. Photochem. Photobiol. A Chem. 353, 215–228.

    Article  CAS  Google Scholar 

  23. I. Siavash (2011). Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650.

    Article  CAS  Google Scholar 

  24. M. Behera and G. Giri (2014). Green synthesis and characterization of cuprous oxide nanoparticles in presence of a bio-surfactant. Mater. Sci. 32, 702–708.

    CAS  Google Scholar 

  25. K. Cheirmadurai, S. Biswas, R. Murali, and P. Thanikaivelan (2014). Green synthesis of copper nanoparticles and conducting nanobiocomposites using plant and animal sources. RSC Adv. 4, 19507–19511.

    Article  CAS  Google Scholar 

  26. B. Kumar, K. Smita, A. Debut, and L. Cumbal (2020). Andean Sacha Inchi (Plukenetia Volubilis L.) leaf-mediated synthesis of Cu2O nanoparticles: A low-cost approach. Bioengineering 7, 54. https://doi.org/10.3390/bioengineering7020054.

    Article  PubMed Central  CAS  Google Scholar 

  27. C. Vasco, K. Riihinen, J. Ruales, and A. Kamal-Eldin (2009). Phenolic compoundsin Rosaceae fruits from Ecuador. J Agric Food Chem 57, 1204–1212.

    Article  CAS  Google Scholar 

  28. B. Kumar, Y. Angulo, K. Smita, L. Cumbal, and A. Debut (2016). Capuli cherry-mediated green synthesis of silver nanoparticles under white solar and blue LED light. Particuology 24, 123–128.

    Article  CAS  Google Scholar 

  29. K. A. Al-Maqdi, S. M. Hisaindee, M. A. Rauf, and S. S. Ashraf (2017). Comparative degradation of a thiazole pollutant by an advanced oxidation process and an enzymatic approach. Biomolecules 7, 64.

    Article  CAS  Google Scholar 

  30. B. Kumar, K. Smita, A. Debut, and L. Cumbal (2020). Synthesis and characterization of SnO2 nanoparticles using cochineal dye. Appl. Phys. A 126, 779(1–9).

    Google Scholar 

  31. P. Li, W. Lv, and S. Ai (2016). Green and gentle synthesis of Cu2O nanoparticles using lignin as reducing and capping reagent with antibacterial properties. J. Exp. Nanosci. 11, 18–27.

    Article  CAS  Google Scholar 

  32. J. Xia, H. Li, Z. Luo, H. Shi, K. Wang, H. Shu, and Y. Yan (2009). Microwave-assisted synthesis of flower-like and leaf-like CuO nanostructures via room-temperature ionic liquids. J. Phys. Chem. Solids 70, 1461–1464.

    Article  CAS  Google Scholar 

  33. X. Tian, J. Wen, Z. Chen, X. Liu, H. Peng, C. Ji, J. Li, Y. Peng, and H. He (2019). One-pot green hydrothermal synthesis and visible-light photocatalytic properties of Cu2O/Cu hybrid composites using egg albumin as structure modifier. Solid State Sci. 93, 70–78.

    Article  CAS  Google Scholar 

  34. B. N. Khlebtsov and N. G. Khlebtsov (2011). On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J. 73, 118–127.

    Article  CAS  Google Scholar 

  35. Z. Xu, Q. F. Yu, W. Xiang, W. Yi, L. Z. Gang, and W. Wei (2011). Hydrothermal synthesis of highly symmetric 26-facet Cu2O polyhedra. Cryst. Res. Technol. 46, 300–304.

    Article  CAS  Google Scholar 

  36. M. Nasrollahzadeh, S. S. Momeni, and S. M. Sajadi (2017). Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe(CN)6. J. Colloid Interface Sci. 506, 471–477.

    Article  CAS  Google Scholar 

  37. V. Fodera, M. Groenning, V. Vetri, F. Librizzi, S. Spagnolo, C. Cornett, L. Olsen, M. van de Weert, and M. Leone (2008). Thioflavin T hydroxylation at basic ph and its effect on amyloid fibril detection. J. Phys. Chem. B 112, 15174–15181.

    Article  CAS  Google Scholar 

  38. Y.-H. Chiu, T.-F. Mark Chang, C. Y. Chen, M. Sone, and Y.-J. Hsu (2019). Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 9, 430. https://doi.org/10.3390/catal9050430.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This scientific work has been funded by the Universidad de las Fuerzas Armadas ESPE, Ecuador, Prometeo Project (2013–2016) of the National Secretariat of Higher Education, Science, Technology and Innovation (SENESCYT), Ecuador and TATA College, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajesh Kumar.

Ethics declarations

Conflict of Interests

The authors confirm they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Smita, K., Debut, A. et al. Green Synthesis of Cuprous Oxide Nanoparticles Using Andean Capuli (Prunus serotina Ehrh. var. Capuli) Cherry. J Clust Sci 32, 1753–1760 (2021). https://doi.org/10.1007/s10876-020-01924-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01924-2

Keywords

Navigation