Skip to main content
Log in

Investigation of Structural, Optical and Antibacterial Activity of ZnS Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Zinc sulfide (ZnS) nanoparticles have been successfully prepared by sol–gel precipitation method. The successful formation of cubic structure is ensured by XRD analysis and Debye Scherrer’s equation is used to determine the crystallite size which was found to be 36 nm for ZnS sample annealed at 200 °C. Surface morphology was studied using HRSEM as well as HRTEM and lattice parameters of the samples were obtained from SAED pattern which was found to have close resemblance to values attained from XRD pattern. Further elemental mapping of ZnS nanoparticles is confirmed by EDX studies. Further Kubelka Munk function was employed to estimate the band gap value which was seen lying within 3.58 to 3.64 eV. Further the antibacterial activity of ZnS is investigated and it is found to be an antibacterial agent of Escherichia coli and staphylococcus aurous, further it can be employed as an antimicrobial agent for prohibiting implant linked infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Malarkodi and G. Annadurai (2013). Applied Nanoscience 3, (5), 389–395.

    Article  CAS  Google Scholar 

  2. J. Chen, B. Hu, and J. Zhi (2016). Phys. E. Low-Dim. Syst. Nanostruct. 79, 103–106.

    Article  CAS  Google Scholar 

  3. S. Azizi, M. B. Ahmad, F. Namvar, and R. Mohamad (2014). Mater. Lett. 116, 275–277.

    Article  CAS  Google Scholar 

  4. H. Yang, P. H. Holloway, and B. B. Ratna (2003). J. Appl. Phys. 93, (1), 586–592.

    Article  CAS  Google Scholar 

  5. L. Fu and Z. Fu (2015). Ceramics. Int. 41, (2), 2492–2496.

    Article  CAS  Google Scholar 

  6. B. Karthikeyan, A. Arun, L. Harini, K. Sundar, and T. Kathiresan (2016). Biol. Trace. Element. Res. 170, (2), 390–400.

    Article  CAS  Google Scholar 

  7. C. S. Dash, S. Sahoo, and S. R. S. Prabaharan (2018). Solid. State. Ionics 324, 218–225.

    Article  CAS  Google Scholar 

  8. C. S. Dash and S. R. S. Prabaharan (2019). Rev. Advanc. Mater. Sci. 58, (1), 248–270.

    Article  Google Scholar 

  9. J. G. S. Mala and C. Rose (2014). J. Biotechnol. 170, 73–78.

    Article  CAS  Google Scholar 

  10. A. K. Singh, V. Viswanath, and V. C. Janu (2009). J. Luminescence. 129, (8), 874–878.

    Article  CAS  Google Scholar 

  11. D. Moore and Z. L. Wang (2006). J. Mater. Chem. 16, (40), 3898–3905.

    Article  CAS  Google Scholar 

  12. Z. Yang, Z. Li, M. Xu, Y. Ma, J. Zhang, Y. Su, and L. Zhang (2013). Nano.-Micro. Lett. 5, (4), 247–259.

    Article  Google Scholar 

  13. K. B. Lin and Y. H. Su (2013). Appl. Phys.B 113, (3), 351–359.

    Article  CAS  Google Scholar 

  14. K. T. Al-Rasoul, N. K. Abbas, and Z. J. Shanan (2013). Int. J. Electrochem. Sci 8, (4), 5594–5604.

    CAS  Google Scholar 

  15. R. Chauhan, A. Kumar, and R. P. Chaudhary (2013). Spectrochimica. Acta. Part. A. Mol. Biomol. Spectroscopy. 113, 250–256.

    Article  CAS  Google Scholar 

  16. J. Hasanzadeh (2016). Acta Phys. Pol. A 129, (6), 1147–1150.

    Article  CAS  Google Scholar 

  17. D. J. Jovanović, I. L. Validzic, I. A. Jankovic, N. Bibic, and J. M. Nedeljkovic (2007). Mater.Lett 61, (22), 4396–4399.

    Article  CAS  Google Scholar 

  18. H. Yang, C. Huang, X. Su, and A. Tang (2005). J. Alloys. Compound. 402, (1–2), 274–277.

    Article  CAS  Google Scholar 

  19. R. F. Zhuo, H. T. Feng, D. Yan, J. T. Chen, J. J. Feng, J. Z. Liu, and P. X. Yan (2008). J. Crystal. Growth 310, (13), 3240–3246.

    Article  CAS  Google Scholar 

  20. J. Li, Y. Xu, Y. Liu, D. Wu, and Y. Sun (2004). China Particuol. 2, (6), 266–269.

    Article  CAS  Google Scholar 

  21. R. Khaparde and S. Acharya (2016). Spectrochimica. Acta. Part. A. Mol. Biomol. Spectroscopy. 163, 49–57.

    Article  CAS  Google Scholar 

  22. L. Ma, H. Luo, W. Wang, L. Li, F. M. Zhang, and X. S. Wu (2015). Mater. Lett. 139, 364–367.

    Article  CAS  Google Scholar 

  23. R. Wang, H. Liang, J. Hong, and Z. Wang (2016). J. Photochem. Photobiol. A Chem. 325, 62–67.

    Article  CAS  Google Scholar 

  24. A. Hastir, S. Sharma, and R. C. Singh (2016). Appl. Surface. Sci. 372, 57–62.

    Article  CAS  Google Scholar 

  25. S. Yuvaraj, A. C. Fernandez, M. Sundararajan, C. S. Dash, and P. Sakthivel (2020). Ceramics. Int. 46, (1), 391–402.

    Article  CAS  Google Scholar 

  26. R. Mariappan, V. Ponnuswamy, A. C. Bose, A. Chithambararaj, R. Suresh, and M. Ragavendar (2014). Superlattices. Microstruct. 65, 184–194.

    Article  CAS  Google Scholar 

  27. T. F. Yi, Y. Li, Y. Li, S. Luo, and Y. G. Liu (2019). Solid. State. Ionics. 343, 115074.

    Article  CAS  Google Scholar 

  28. M. Sundararajan, P. Sakthivel, and A. C. Fernandez (2018). J. Alloys. Compound. 768, 553–562.

    Article  CAS  Google Scholar 

  29. L. Wang, S. Huang, and Y. Sun (2013). Appl. Surface. Sci. 270, 178–183.

    Article  CAS  Google Scholar 

  30. V. T. Liveri, M. Rossi, G. D’Arrigo, D. Manno, and G. Micocci (1999). Appl. Phys. A 69, (4), 369–373.

    Article  CAS  Google Scholar 

  31. T. Yamamoto, S. Kishimoto, and S. Iida (2001). Phys. B. Condensed. Matter. 308, 916–919.

    Article  Google Scholar 

  32. C. Wang, B. Hu, L. Chen, N. Liu, and J. Li (2020). Optik 224, 165673.

    Article  CAS  Google Scholar 

  33. T. Liu, J. Qian, C. Wang, Y. Wang, Y. Yang, B. Kong, and W. Wu (2020). Inorganic Chem. Communicat. 119, 108142.

    Article  CAS  Google Scholar 

  34. Archana, LS, Rajendran DN. Materials Today. https://doi.org/10.1016/j.matpr.2020.05.227

  35. S. Ali, S. Saleem, M. Salman, and M. Khan (2020). Mater. Chem. Phys. 248, 122900.

    Article  CAS  Google Scholar 

  36. K. Djebli, H. Tebani, A. Abdessemed, and N. Keghouche (2019). Mater. Sci. Semiconduct. Process. 103, 104599.

    Article  CAS  Google Scholar 

  37. J. Sharma, A. Gupta, and O. P. Pandey (2019). Ceramics. Int. 45, 13671–13678.

    Article  CAS  Google Scholar 

  38. A. T. Dhiwahar, M. Sundararajan, P. Sakthivel, C. S. Dash, and S. Yuvaraj (2020). J. Phy. Chem. Solids. 138, 109257.

    Article  CAS  Google Scholar 

  39. R. Kripal, A. K. Gupta, S. K. Mishra, R. K. Srivastava, A. C. Pandey, and S. G. Prakash (2010). Spectrochimica. Acta. Part. A. Mol. Biomol. Spectroscopy 76, (5), 523–530.

    Article  CAS  Google Scholar 

  40. K. Elumalai and S. Velmurugan (2015). Appl. Surface. Sci. 345, 329–336.

    Article  CAS  Google Scholar 

  41. S. Ramachandran, C. S. Dash, A. Thamilselvan, S. Kalpana, and M. Sundararajan (2020). J. Nanosci. Nanotechnol. 20, (4), 2382–2388.

    Article  PubMed  CAS  Google Scholar 

  42. R. Ramamoorthy, V. Eswaramoorthi, M. Sundararajan, M. Boobalan, A. D. Sivagami, and R. V. Williams (2019). J. Mater. Sci. Mater. Electron. 30, (14), 12966–12980.

    Article  CAS  Google Scholar 

  43. B. Poornaprakash, D. A. Reddy, G. Murali, R. P. Vijayalakshmi, and B. K. Reddy (2015). Phys. E. Low-Dimensional. Syst. Nanostruct. 73, 63–68.

    Article  CAS  Google Scholar 

  44. M. Gunbat, S. Horoz, O. Sahin, and A. Ekinci (2018). J. Non-Oxide. Glasses. 10, (4), 91–96.

    Google Scholar 

  45. R. Jalal, E. K. Goharshadi, M. Abareshi, M. Moosavi, A. Yousefi, and P. Nancarrow (2010). Mater. Chem. Phys. 121, (1–2), 198–201.

    Article  CAS  Google Scholar 

  46. S. Ghosh, V. S. Goudar, K. G. Padmalekha, S. V. Bhat, S. S. Indi, and H. N. Vasan (2012). Rsc. Adv. 2, (3), 930–940.

    Article  CAS  Google Scholar 

  47. E. P. J. Perez (2012). Nilda de Fatima Ferreira Soares, Jane Sélia Dos Reis Coimbra, Nelio Jose de Andrade, Renato Souza Cruz, Eber Antonio Alves Medeiros. Food. Bioprocess. Technol. 5, 1447–1464.

    Article  CAS  Google Scholar 

  48. S. K. Jesudoss, J. J. Vijaya, L. J. Kennedy, P. I. Rajan, H. A. Al-Lohedan, R. J. Ramalingam, and M. Bououdina (2016). J. Photochem. Photobiol. B. Biol. 165, 121–132.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the Adhiyamaan College of Engineering for providing the infrastructure to perform this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Vijayan or G. Umadevi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayan, S., Dash, C.S., Umadevi, G. et al. Investigation of Structural, Optical and Antibacterial Activity of ZnS Nanoparticles. J Clust Sci 32, 1601–1608 (2021). https://doi.org/10.1007/s10876-020-01923-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01923-3

Keywords

Navigation