Skip to main content
Log in

Can the Docking Experiments Select the Optimum Natural Bio-macromolecule for Doxorubicin Delivery?

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The effective entrapment of drugs into nanoparticles is one of the most important features during nanoparticles preparation. The percentage loaded drug into the nanoparticles determines the amount of drug that will reach the site of action and affects the drug release rate. However, wet experiments for the preparation and characterization of nanoparticles consume a lot of time and effort, which should be reduced. The current study investigates the possibility of using molecular dynamics and docking experiments for picking a suitable natural bio-macromolecule for loading doxorubicin into nanoparticles. The docking results of doxorubicin on three bio-macromolecules, namely albumin, hyaluronic acid and surfactin were compared to the loading data obtained from literature. The results revealed that doxorubicin-loading rank gathered from literature correlates well with the obtained docking binding energies. In conclusion, docking experiment provides an excellent tool for selecting an optimum carrier for drug loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. K. Kim, H. Choi, E. S. Choi, M.-H. Park, and J.-H. Ryu (2019). Hyaluronic acid-coated nanomedicine for targeted cancer therapy. Pharmaceutics 11, (7), 301.

    Article  CAS  Google Scholar 

  2. C. Holohan, S. Van Schaeybroeck, D. B. Longley, and P. G. Johnston (2013). Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, (10), 714–726.

    Article  CAS  Google Scholar 

  3. P. S. Steeg (2016). Targeting metastasis. Nat. Rev. Cancer 16, (4), 201–218.

    Article  CAS  Google Scholar 

  4. B. Jiang, L. J. Yan, and Q. Wu (2019). ABCB1 (C1236T) polymorphism affects p-glycoprotein-mediated transport of methotrexate, doxorubicin, actinomycin d, and etoposide. DNA Cell Biol. 38, (5), 485–490.

    Article  CAS  Google Scholar 

  5. M. Bar-Zeev, Y. D. Livney, and Y. G. Assaraf (2017). Targeted nanomedicine for cancer therapeutics: towards precision medicine overcoming drug resistance. Drug Resist. Updates 31, 15–30.

    Article  Google Scholar 

  6. M. Björnmalm, K. J. Thurecht, M. Michael, A. M. Scott, and F. Caruso (2017). Bridging bio-nano science and cancer nanomedicine. ACS Nano 11, (10), 9594–9613.

    Article  CAS  Google Scholar 

  7. A. K. Iyer, G. Khaled, J. Fang, and H. Maeda (2006). Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 11, (17), 812–818.

    Article  CAS  Google Scholar 

  8. M. M. Farid, R. M. Hathout, M. Fawzy, and K. Bou-Aisha (2014). Silencing of the scavenger receptor (Class B - Type 1) gene using siRNA-loaded chitosan nanaoparticles in a HepG2 cell model. Colloids Surf. B Biointerfaces 123, 930–937.

    Article  CAS  Google Scholar 

  9. H. Onafuye, S. Pieper, D. Mulac Jr., M. N. Wass, Langer, et al. (2019). Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells. Beilstein J. Nanotechnol. 10, 1707–1715.

    Article  CAS  Google Scholar 

  10. S. Honary, M. Jahanshahi, P. Golbayani, P. Ebrahimi, and K. Ghajar (2010). Doxorubicin-Loaded Albumin Nanoparticles: formulation and Characterization. J. Nanosci. Nanotechnol. 10, (11), 7752–7757.

    Article  CAS  Google Scholar 

  11. W. Huang, Y. Lang, A. Hakeem, Y. Lei, L. Gan, and X. Yang (2018). Surfactin-based nanoparticles loaded with doxorubicin to overcome multidrug resistance in cancers. Int. J. Nanomed. 13, 1723–1736.

    Article  CAS  Google Scholar 

  12. G. Tian, X. Sun, J. Bai, J. Dong, B. Zhang, Z. Gao, and J. Wu (2018). Doxorubicin-loaded dual-functional hyaluronic acid nanoparticles: preparation, characterization and antitumor efficacy in vitro and in vivo. Mol. Med. Rep. 19, 133–142.

    PubMed  PubMed Central  Google Scholar 

  13. M. Shokry, R. M. Hathout, and S. Mansour (2018). Exploring gelatin nanoparticles as novel nanocarriers for Timolol Maleate: augmented in vivo efficacy and safe histological profile. Int. J. Pharm. 545, (1–2), 229–239.

    Article  CAS  Google Scholar 

  14. Y. Takakura, T. Fujita, M. Hashida, and H. Sezaki (1990). Disposition characteristics of macromolecules in tumor-bearing mice. Pharm. Res. 7, (4), 339–346.

    Article  CAS  Google Scholar 

  15. S. K. Straus and R. E. W. Hancock (2006). Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochimica et Biophysica Acta (BBA). 1758, (9), 1215–1223.

    Article  CAS  Google Scholar 

  16. P.-E. Colombo, M. Boustta, S. Poujol, F. Pinguet, P. Rouanet, F. Bressolle, et al. (2007). Biodistribution of doxorubicin-alkylated poly(l-lysine citramide imide) conjugates in an experimental model of peritoneal carcinomatosis after intraperitoneal administration. Eur. J. Pharm. Sci. 31, (1), 43–52.

    Article  CAS  Google Scholar 

  17. Y. Sadzuka, A. Nakade, R. Hirama, A. Miyagishima, Y. Nozawa, S. Hirota, et al. (2002). Effects of mixed polyethyleneglycol modification on fixed aqueous layer thickness and antitumor activity of doxorubicin containing liposome. Int. J. Pharm. 238, (1–2), 171–180.

    Article  CAS  Google Scholar 

  18. A. Jain, P. Kesharwani, N. K. Garg, A. Jain, S. A. Jain, A. K. Jain, et al. (2015). Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf. B 134, 47–58.

    Article  CAS  Google Scholar 

  19. M. Ossama, R. M. Hathout, D. A. Attia, and N. D. Mortada (2019). Enhanced allicin cytotoxicity on HEPG-2 cells using glycyrrhetinic acid surface-decorated gelatin nanoparticles. ACS Omega. 4, (6), 11293–11300.

    Article  CAS  Google Scholar 

  20. A. A. Metwally and R. M. Hathout (2015). Replacing microemulsion formulations experimental solubility studies with in silico methods comprising molecular dynamics and docking experiments. Chem. Eng. Res. Des. 104, 453–456.

    Article  CAS  Google Scholar 

  21. R. M. Hathout, A. A. Metwally, T. J. Woodman, and J. G. Hardy (2020). Prediction of drug loading in the gelatin matrix using computational methods. ACS Omega. 5, (3), 1549–1556.

    Article  CAS  Google Scholar 

  22. R. M. Hathout and A. A. Metwally (2016). Towards better modelling of drug-loading in solid lipid nanoparticles: molecular dynamics, docking experiments and Gaussian Processes machine learning. Eur. J. Pharm. Biopharm. 108, 262–268.

    Article  CAS  Google Scholar 

  23. A. A. Metwally and R. M. Hathout (2015). Computer-assisted drug formulation design: novel approach in drug delivery. Mol. Pharm. 12, (8), 2800–2810.

    Article  CAS  Google Scholar 

  24. A. A. Metwally, S. H. El-Ahmady, and R. M. Hathout (2016). Selecting optimum protein nano-carriers for natural polyphenols using chemoinformatics tools. Phytomedicine 23, (14), 1764–1770.

    Article  CAS  Google Scholar 

  25. M. Elhefnawi, M. ElGamacy, and M. Fares (2012). Multiple virtual screening approaches for finding new hepatitis C virus RNA-dependent RNA polymerase inhibitors: structure-based screens and molecular dynamics for the pursue of new poly pharmacological inhibitors. BMC Bioinform. 13, (Suppl 17), S5.

    Article  CAS  Google Scholar 

  26. R. M. Hathout, S. H. El-Ahmady, and A. A. Metwally (2018). Curcumin or bisdemethoxycurcumin for nose-to-brain treatment of Alzheimer disease? A bio/chemo-informatics case study. Nat. Prod. Res. 32, (24), 2873–2881.

    Article  CAS  Google Scholar 

  27. R. Wang, L. Lai, and S. Wang (2002). Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aid. Mol. Des. 16, 11–26.

    Article  CAS  Google Scholar 

  28. I. A. Guedes, F. S. S. Pereira, and L. E. Dardenne (2018). Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front. Pharmacol. 9, 1089.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania M. Hathout.

Ethics declarations

Conflict of Interest

The authors report no conflict of interest and there has been no financial support for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gad, H.A., Hathout, R.M. Can the Docking Experiments Select the Optimum Natural Bio-macromolecule for Doxorubicin Delivery?. J Clust Sci 32, 1747–1751 (2021). https://doi.org/10.1007/s10876-020-01910-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01910-8

Keywords

Navigation