Skip to main content
Log in

Structural Surface Features of Paramagnetic Multifunctional Nanohybrids Based on Silver Oleic Acid

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Sols of core–shell silver nanoparticles (AgNPs) are synthesized by electrochemical method. The method provides the ability to adjust the particle size by changing both the concentration of oleic acid and the residence time τ0 in the organic phase. We synthesized AgNPs with oleic acid (OA) concentration of 0.25% (AgNPs & 0.25% OA) and 0.75% (AgNPs & 0.75% OA). These nanoparticles have been studied using modern physical–chemical methods. Differential thermal analysis curves indicate the chemical nature of bond ligand in the secondary shell; this conclusion is confirmed by quantum chemical simulation and semi-empirical calculation. In the electron paramagnetic resonance spectra of silver-containing sols AgNPs & 0.25% OA and AgNPs & 0.75% OA complex wide asymmetric signals of 500–800 G and g-factor of 2.09–2.13 are recorded, in addition, in the spectra of AgNPs with bilayer the pronounced ferromagnetic contribution is observed. The change of the oleic acid layers of the particles affects the dimension of the nanocrystallites that are being formed and the manifestation of their magnetism.

Trial registration number and date of registration JCS-P-20-03-0188.R1, 22-Sep-2020 (02-Mar-2020)

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

All authors agreed to publish the materials of the manuscript, any additional information can be provided upon request.

References

  1. N. Barkalina, C. Charalambous, C. Jones, K. Coward, Nanomedicine 10, 921 (2014)

    Article  PubMed  CAS  Google Scholar 

  2. P. Boisseau, B. Loubaton, Comptes Rendus Phys. 12, 620 (2011)

    Article  CAS  Google Scholar 

  3. S. Suresh, Nanosci. Nanotechnol. 3, 62 (2013)

    Google Scholar 

  4. F.K. Schmidt, Y.Y. Titova, L.B. Belykh, V.A. Umanets, S.S. Khutsishvili, Russ. J. Gen. Chem. 82, 1334 (2012)

    Article  CAS  Google Scholar 

  5. J. Liu, A. Goswami, K. Jiang, F. Khan, S. Kim, R. McGee, Z. Li, Z. Hu, J. Lee, T. Thundat, Nat. Nanotechnol. 13, 112 (2018)

    Article  PubMed  CAS  Google Scholar 

  6. U. Landau, K. Anselm, Bactericidal and oligodynamic action of silver and copper in hygien, medicine and water treatment (Finishing Publications Ltd, Stevenage, 2007)

    Google Scholar 

  7. U. Heiz, U. Landman, Nanocatalysis (Springer, Berlin, 2007)

    Book  Google Scholar 

  8. S. Chaturvedia, P.N. Davea, N.K. Shah, J. Saudi Chem. Soc. 16, 307 (2012)

    Article  CAS  Google Scholar 

  9. M. Rai, A.P. Ingle, S. Birla, A. Yadav, C.A.D. Santos, Crit. Rev. Microbiol. 42, 696 (2015)

    PubMed  Google Scholar 

  10. A.D. Pomogailo, G.I. Dzhardimalieva, Nanostructured materials preparation via condensation ways (Science+Business Media, Dordrecht, 2014)

    Book  Google Scholar 

  11. T. Singh, S. Shukla, P. Kumar, V. Wahla, V.K. Bajpai, I.A. Rather, Front. Microbiol. 8, 1501 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  12. M. Carbone, D. Domenica, G. Sabbatella, R. Antiochia, JKSS 28, 273 (2016)

    Google Scholar 

  13. S.J. Park, H.H. Park, S.Y. Kim, S.J. Kim, K. Woo, G. Ko, Appl. Environ. Microbiol. 80, 2343 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. S.S. Khutsishvili, T.I. Vakul’skaya, G.P. Aleksandrova, B.G. Sukhov, Micro Nano Lett. 12, 418 (2017)

    Article  CAS  Google Scholar 

  15. A. Kubacka, M.L. Cerrada, C. Serrano, M. Fernández-García, M. Ferrer, M. Fernández-Garcia, J. Phys. Chem. C 113, 9182 (2009)

    Article  CAS  Google Scholar 

  16. T.V. Ganenko, A.P. Tantsyrev, A.N. Sapozhnikov, S.S. Khutsishvili, T.I. Vakul’skaya, T.V. Fadeeva, B.G. Sukhov, B.A. Trofimov, Russ. J. Gen. Chem. 85, 477 (2015)

    Article  CAS  Google Scholar 

  17. Y. Delgado-Beleño, C.E. Martinez-Nuñez, M. Cortez-Valadez, N.S. Flores-López, M. Flores-Acosta, Mater. Res. Bull. 99, 385 (2018)

    Article  CAS  Google Scholar 

  18. A.K. Agrawal, P.K. Sahu, S. Seth, M. Sarkar, J. Phys. Chem. C 123, 3836 (2019)

    Article  CAS  Google Scholar 

  19. C.M. Fox, C.B. Breslin, J. Appl. Electrochem. 50, 125 (2020)

    Article  CAS  Google Scholar 

  20. D.K. Yadav, R. Gupta, V. Ganesan, P.K. Sonkar, P.K. Rastogi,J. Appl. Electrochem. 46, 103 (2016)

    Article  CAS  Google Scholar 

  21. C. Elbadawi, J.E. Fröch, I. Aharonovich, M. Toth, C.J. Loo, J. Phys. Chem. C 123, 945 (2019)

    Article  CAS  Google Scholar 

  22. B.A. Rozenberg, R. Tenne, Prog. Polym. Sci. 33, 40 (2008)

    Article  CAS  Google Scholar 

  23. A. Shokuhfar, New frontiers of nanoparticles and nanocomposite materials. Novel principles and techniques (Springer-Verlag-Berlin, Heidelberg, 2013)

    Google Scholar 

  24. C.N.R. Rao, A. Müller, A.K. Cheetham, The chemistry of nanomatherials (Wiley-VCH, Weinheim, 2004)

    Book  Google Scholar 

  25. A.A.A. Arcos, M. Miranda-Hernández, in Silver nanoparticles. Fabrication, characterization and applications, ed. By K. Maaz (InTech, Rijeka, 2018), p. 263

  26. S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, G.Y. Yurkov, Rss. Chem. Rev. 74, 489 (2005)

    Article  CAS  Google Scholar 

  27. G.R. Nasretdinova, R.R. Fazleeva, R.K. Mukhitova, I.R. Nizameev, M.K. Kadirov, A.Y. Ziganshina, V.V. Yanilkin, Electrochem. Commun. 50, 69 (2015)

    Article  CAS  Google Scholar 

  28. R.A. Khaydarov, R.R. Khaydarov, O. Gapurova, Y. Estrin, T. Scheper, J. Nanopart. Res. 11, 1193 (2009)

    Article  CAS  Google Scholar 

  29. M.V. Roldán, N. Pellegri, O. de Sanctis, J. Nanopart. 201, 524150 (2013)

    Article  CAS  Google Scholar 

  30. B. Kalska-Szostko, in Recent trend in electrochemical science and technology, ed. By U.K. Sur (InTech, Rijeka, 2012), p. 261

    Google Scholar 

  31. M. Donadze, M. Gabrichidze, S. Calvache, T. Agladze, Int.J. Surf. Eng. Coat. 94, 16 (2016)

    CAS  Google Scholar 

  32. T. Agladze, M. Donadze, M. Gabrichidze, P. Toidze, J. Shegelia, N. Boshkov, N. Tsvetkova, Z. Phys. Chem. 227, 1187 (2013)

    CAS  Google Scholar 

  33. S.F. Adil, M.E. Assal, M.Khan, A. Al-Warthan, M.R.H. Siddiqui, Oxid. Commun. 36, 778 (2013)

    CAS  Google Scholar 

  34. J.H. Flynn, J. Therm. Anal. 27, 95 (1983)

    Article  CAS  Google Scholar 

  35. T.A. Ozawa, Bull. Chem. Soc. Jpn 38, 1881 (1968)

    Article  Google Scholar 

  36. 36. C.A. Barret, T.B. Massalsky, Structure of metals (McGraw-Hill, New York, 1966)

    Google Scholar 

  37. Y.-Y. Shi, B. Sun, Z. Zhou, Y.-T. Wu, M.-F. Zhu, Prog. Nat. Sci-Mat. 21, 447 (2011)

    Article  Google Scholar 

  38. D.H. Lee, J. Mater. Sci. 34, 139 (1999)

    Article  CAS  Google Scholar 

  39. K. Yang, H. Peng, Y. Wen, N. Li, Appl. Surf. Sci. 256, 303 (2010)

    Article  CAS  Google Scholar 

  40. C. Doyle, J. Appl. Polym. Sci. 5, 285 (1961)

    Article  CAS  Google Scholar 

  41. Q. Lan, C. Liu, F. Yang, S. Liu, J. Xu, D. Sun, J. Coll. Interf. Sci. 310, 260 (2007)

    Article  CAS  Google Scholar 

  42. J. Ridley, M. Zerner, Theor. Chim. Acta 32, 111 (1973)

    Article  CAS  Google Scholar 

  43. M. Zerner, in Reviews in computational chemistry, vol. 2,ed. By K.B. Lipkowitz, D.B. Boyd (VCH, New York, 1991), p. 313

    Google Scholar 

  44. S. Nellutla, S. Nori, S.R. Singamaneni, J.T. Prater, J. , A.I. Smirnov, J. Appl. Phys. 120, 223902 (2016)

    Article  CAS  Google Scholar 

  45. V. Angelov, H. Velichkova, E. Ivanov, R. Kotsilkova, M.H.Delville, M. Cangiotti, A. Fattori, M.F. Ottaviani, Langmuir 30, 13411 (2014)

    Article  PubMed  CAS  Google Scholar 

  46. M.V. Lesnichaya, B.G. Sukhov, G.P. Aleksandrova, E.R. Gaslova, T.I. Vakul’skaya, S.S. Khutsishvili, A.N. Sapozhnikov, I.V. Klimenkov, B.A. Trofimov, Carbohydr. Polym. 175, 18 (2017)

    Article  PubMed  CAS  Google Scholar 

  47. A. Smirnov, in Multifrequency electron paramagnetic resonance, ed. By S.K. Misra (Willey-VCH, Verlag, 2011), p. 825

    Chapter  Google Scholar 

  48. M. Schlott, H. Schaeffer, B. Elschner, Z. Phys. B Condens. Matter. 63, 427 (1986)

    Article  CAS  Google Scholar 

  49. J. Stöhr, H.C. Siegmann, Magnetism: From fundamentals to anoscale dynamics (Springer-Verlag-Berlin, Heidelberg, 2006)

    Google Scholar 

  50. P.A. Venegas, P.R.S. Netto, J. Appl. Phys. 83, 6958 (1998)

    Article  CAS  Google Scholar 

  51. P.-H. Shin, S.Y. Wu, Nanoscale Res. Lett. 5, 25 (2010)

    Article  CAS  Google Scholar 

  52. M. Kakazey, N. Ivanova, G. Sokolsky, J.G. Gonzalez, Electrochem. Solid-State Lett. 4, J1 (2001)

    Article  CAS  Google Scholar 

  53. F. Blatter, K.W. Blazey, Z. Phys. D: At. Mol. Clusters 18, 427 (1991)

    Article  CAS  Google Scholar 

  54. S. Sako, K. Kimura, Surf. Sci. 156, 511 (1985)

    Article  CAS  Google Scholar 

  55. X.M. Li, A. Vannice, J. Catal. 151, 87 (1995)

    Article  CAS  Google Scholar 

  56. A. Kawabata, J. Phys. Soc. Jpn 29, 902 (1970)

    Article  CAS  Google Scholar 

  57. P. Claus, A. Bruckner, C. Mohr, H. Hofmeister, J. Am. Chem. Soc. 122, 11430 (2000)

    Article  CAS  Google Scholar 

  58. J. Michalik, D. Brown, J.-S. Yu, M. Danilczuk, J.Y. Kim,. Kevan, Phys. Chem. Chem. Phys. 3, 1705 (2001)

    Article  CAS  Google Scholar 

  59. S.H. Lee, B.-H. Jun, Int. J. Mol. Sci. 20, 865 (2019)

    Article  PubMed Central  CAS  Google Scholar 

  60. M. Ali, A.I. Shames, S. Gangopadhyay, B. Saha, D. Meyerstein, Transit. Metal Chem. 29, 463 (2004)

    Article  CAS  Google Scholar 

  61. N.I. Tikhonov, S.S. Khutsishvili, L.I. Larina, A.S. Pozdnyakov, A.I. Emel’yanov, G.F. Prozorova, A.V. Vashchenko, T.I. Vakul’skaya, J. Mol. Struct. 1180, 272 (2019)

    Article  CAS  Google Scholar 

  62. M.O. Kester, A.L. Allred, J. Am. Chem. Soc. 94, 7189 (1972)

    Article  Google Scholar 

  63. H.N. Po, Coord. Chem. Rev. 20, 171 (1976)

    Article  CAS  Google Scholar 

  64. O.P. Murtha, R.A. Walton, Inorg. Chem. 12, 1278 (1973)

    Article  CAS  Google Scholar 

  65. G.W.A. Fowles, R.W. Mattews, R.A. Walton, J. Chem. Soc. A 1, 1108 (1968)

    Article  Google Scholar 

  66. S.S. Khutsishvili, T.I. Vakul’skaya, N.P. Kuznetsova, T.G. Ermakova, A.S. Pozdnyakov, G.F. Prozorova, J. Phys. Chem. C 118, 19338 (2014)

    Article  CAS  Google Scholar 

  67. J.A. McMilan, B. Smaler, J. Chem. Phys. 35, 1698 (1961)

    Article  Google Scholar 

  68. 68. H.R. Moon, J.H. Kim, M.P. Suh, Angew. Chem. Int. Ed. 44, 1261 (2005)

    Article  CAS  Google Scholar 

  69. G. Mitrikas, Y. Deligiannakis, C.C. Trapalis, N. Boukos, G. Kordas, J. Sol-Gel Sci. Technol. 13, 503 (1998)

    Article  CAS  Google Scholar 

  70. S.S. Khutsishvili, T.I. Vakul’skaya, G.P. Aleksandrova, B.G. Sukhov, J. Cluster Sci. 28, 3067 (2017)

    Article  CAS  Google Scholar 

  71. V.A. Timoshenko, T.I. Shabatina, Y.N. Morozov, G.B. Sergeev, J. Struct. Chem. 47, 145 (2006)

    Article  CAS  Google Scholar 

  72. J. Michalik, H. Yamada, D.R. Brown, L. Kevan, J. Phys. Chem. 100, 4213 (1996)

    Article  CAS  Google Scholar 

  73. nM. Eichelbaum, K. Rademann, A. Hoell, D.M. Tatchev, W. Weigel, R. Stößer, G. Pacchioni, Nanotechnology 19, 1 (2008)

    Article  CAS  Google Scholar 

  74. L. Shen, P.E. Laibinis, T.A. Hatton, Langmuir 15, 447 (1999)

    Article  CAS  Google Scholar 

  75. J. Yang, B. Hou, J. Wang, B. Tian, J. Bi, N. Wang, X. Li, X. Huang, Nanomaterials 9, 424 (2019)

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The project has been fulfilled with financial support of National Science Foundation of Georgia (Grant No 217020). The authors are grateful to the Baikal Analytical Center of Collective Use, SB RAS. Research studies is performed by S.S. Khutsishvili in the framework of State contracts No AAAA-A1611611210009-5 of the program of fundamental research.

Funding

The project has been fulfilled with financial support of National Science Foundation of Georgia (Grant No 217020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spartak S. Khutsishvili.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Consent to Participate

All authors agreed to be co-authors of the manuscript.

Consent for Publication

All authors agreed to publish the materials of the manuscript.

Ethics Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (TIF 1403 kb) Fig. S1 TGA and DTA curves of (a) AgNPs & 0.25% OA and (b) AgNPs & 0.75% OA sols

Supplementary file 2 (TIF 449 kb) Fig. S2 XRD spectra for (a) AgNPs & 0.25% OA and (b) AgNPs & 0.75% OA sols

Supplementary file 3 (TIF 360 kb) Fig. S3 FT-IR spectra for (a) AgNPs & 0.25% OA and (b) AgNPs & 0.75% OA sols

10876_2020_1904_MOESM4_ESM.tif

Supplementary file 4 (TIF 1527 kb) Fig. S4 OFW plots at various mass loss for (a) AgNPs & 0.25% OA and (b) AgNPs & 0.75% OA sols

10876_2020_1904_MOESM5_ESM.tif

Supplementary file 5 (TIF 162 kb) Fig. S5 Thermodesorption activation energies calculated by OFW method as a function of the conversion degree

10876_2020_1904_MOESM6_ESM.tif

Supplementary file 6 (TIF 1669 kb) Fig. S6 Calculated values of (a) effective charges and (b) potential of free OA molecule

10876_2020_1904_MOESM7_ESM.tif

Supplementary file 7 (TIF 768 kb) Fig. S7 Calculated values of chemisorbed OA molecules for (a) AgNPs & 0.25% OA and (b) AgNPs & 0.75% OA sols

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khutsishvili, S.S., Toidze, P., Donadze, M. et al. Structural Surface Features of Paramagnetic Multifunctional Nanohybrids Based on Silver Oleic Acid. J Clust Sci 32, 1351–1359 (2021). https://doi.org/10.1007/s10876-020-01904-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01904-6

Keywords

Navigation