Skip to main content
Log in

Synthesis, Characterization and Antimicrobial Properties of Superparamagnetic α-Fe2O3 Nanoparticles Stabilized by Biocompatible Starch

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the present study we have synthesized α-Fe2O3 nanoparticles in a more conventionally established NaBH4 reduction, but using a bio-macromolecule, starch. The synthesized nanoparticles were characterized using UV/visible and FTIR spectroscopic, XRD, SEM, and TEM techniques. The stabilised nanoparticles showed a considerable reduction in size (12–17 nm) compared to the bare nanoparticles (24–52 nm). The magnetic studies were conducted using VSM analysis. The most significant result was observed that the starch stabilised iron oxide nanoparticles showed superparamagnetic behaviour, while the bare nanoparticles remained weakly ferromagnetic. The antimicrobial properties of these superparamagnetic particles were monitored against five bacterial and fungal strains each.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. [1] F. Buazar, S.Sweidi, M. Badri, F. Kroushawi, Green Processing and Synthesis 8(1), (2019) 691-702.

    Article  CAS  Google Scholar 

  2. T. Khalafi, F. Buazar, K. Ghanemi, Sci. Rep 9(1), (2019) 1-10.

    Article  CAS  Google Scholar 

  3. N.N. Nassar, A. Hassan, L. Carbognani, F. Lopez-Linares, P. Pereira-Almao, Fuel 95, (2012) 257-262.

    Article  CAS  Google Scholar 

  4. H.S. Devi, T.D. Singh, Perspect Sci 8 (2016) 287-289.

    Article  Google Scholar 

  5. I.T. Papadas, S. Fountoulaki, I.N. Lykakis, G.S. Armatas, Chemistry 22 (2016) 4600-4607.

    Article  PubMed  CAS  Google Scholar 

  6. B. Movassagh, A. Yousefi, Monatshefte für Chemie - Chemical Monthly146 (2015) 135-142.

    Article  CAS  Google Scholar 

  7. P.C. Nagajyothi, M.Pandurangan, D.H. Kim, T.V.M. Sreekanth, J. Shim, J. Clust. Sci 28 (2017) 245-257.

    Article  CAS  Google Scholar 

  8. I.H. Kim, H.O. Seo, E.J. Park, S.W. Han, Y.D. Kim, Sci Rep 7 (2017), Article number: 40497, doi:10.1038/srep40497.

    Article  PubMed  PubMed Central  Google Scholar 

  9. P.S. Vengsarkar, R. Xu, C.B. Roberts, Ind. Eng. Chem. Res 54 (2015) 11814–11824.

    Google Scholar 

  10. M. Tejeda-Serrano, J.R. Cabrero-Antonino, V. Mainar-Ruiz, M. López-Haro, J.C. Hernández-Garrido, J.J. Calvino, A. Leyva-Pérez, A. Corma, ACS Catal 7 (2017) 3721–3729.

    Article  CAS  Google Scholar 

  11. M. Ikenberry, L. Peña, D. Wei, H. Wang, S.H. Bossmann, T. Wilke,D. Wang, V.R. Komreddy,D.P. Rillema. K.L. Hohn, Green Chem 16 (2014) 836-843.

    Article  CAS  Google Scholar 

  12. M. Hermanek, R.Zboril, I. Medrik, J.Pechousek, C. Gregor, J. Am. Chem. Soc 129 (2007) 10929-10936.

    Article  PubMed  CAS  Google Scholar 

  13. K.R. O'Neal, J.M. Patete, P. Chen, R. Nanavati, B.S. Holinsworth, J.M. Smith, C. Marques, J.W. Simonson, M.C. Aronson, S.A. McGill, S,S. Wong, J.L. Musfeldt, Phys. Rev 95 (2017) 125416.

    Article  Google Scholar 

  14. M. Mazloum-Ardakani, M. Maleki, A. Khoshroo, J. Iran. Chem. Soc 14 (2017) 1659-1664.

    Article  CAS  Google Scholar 

  15. N.V. Long, T. Teranishi, Y. Yang, C.M. Thi, Y. Cao, M. Nogami, Int. J. Met. Mater. Eng 1 (2015) 1-18.

    Google Scholar 

  16. S.W. Hwang, A. Umar, G.N. Dar, S.H. Kim, R.I. Badran, Sensor Lett 12 (2014) 1-5.

    Article  CAS  Google Scholar 

  17. D. Schutt. Recent Progress in Toner Technologies. 2004, 108–111.

  18. J. Roger, J.N. Pons, R. Massart, A. Halbreich, J.C. Bacri, Eur. Phys. J. Appl. Phys 5 (1999) 321-325.

    Article  CAS  Google Scholar 

  19. H. Honda, A. Kawabe, M. Shinkai, T. Kobayashi, J. Ferment. Bioeng 86 (1998) 191-196.

    Article  CAS  Google Scholar 

  20. R.A. Rikers, J.H.L. Voncken, W.L. Dalmijn, J. Environ. Eng 124 (1998) 1159-1164.

    Article  Google Scholar 

  21. A.D. Ebner, J.A. Ritter, H.J. Ploehn, R.L. Kochen, J.D. Navratil, Sep. Sci. Technol 34 (1999) 1277-1300.

    Article  CAS  Google Scholar 

  22. K.H. Hardani, F. Buazar, K. Ghanemi, M. Kashisaz, M.H. Baghlani-Nezhad, A. Khaledi-Naseb, M. Badri,AASCIT J. Nanosci 1 (2015) 11-18.

    Google Scholar 

  23. S.F. Hasany, I. Ahmed, J. Rajan, A. Rehman, Nanosci. Nanotechno 2 (2012) 148-158.

    Article  CAS  Google Scholar 

  24. Z. Dai, F. Meiser, H. Mohwald, J. Colloid Interface Sci 288 (2005) 298-300.

    Article  PubMed  CAS  Google Scholar 

  25. L. Duraes, B.F.O. Costa, J. Vasques, J. Campos, A. Portugal, Mater.Lett 59 (2005) 859-863.

    Article  CAS  Google Scholar 

  26. A.A. Ismail, Applied Catalysis B: Environmental. 58 (2005) 115-121.

    Article  CAS  Google Scholar 

  27. A. Lassoued, A. Dkhil, A. Gadri, S. Ammar, Results Phys 7 (2017) 3007– 3015.

    Article  Google Scholar 

  28. M. Farahmandjou, F. Soflaee, Phys. Chem. Res 3 (2015) 191-196.

    CAS  Google Scholar 

  29. K. Huang, S.H. Ehrman, Langmuir. 23 (2007) 1419–1426.

    Article  PubMed  CAS  Google Scholar 

  30. M. Farahmandjou, F. Soflaee, Int. J. Bio-Inorg. Hybrid Nanomater 3(2014) 203-206.

    Google Scholar 

  31. J.E. Greedon, Magnetic Oxides, Encyclopedia of Inorganic chemistry. 1994, New York: John Wiley & Sons, ISBN 0-471-93620-0.

    Google Scholar 

  32. C.E. Housecroft, A.G. Sharpe, Chapter 22: d-block Metal Chemistry: The First Row Elements, Inorganic Chemistry, 3rd Edition. 2008, Pearson, p.716. ISBN 978-0-13-175553-6.

  33. V. Patsula, M. Moskvin, S. Dutz, D. Horak, J. Phys. Chem. Solids 88 (2016) 24-30.

    Article  CAS  Google Scholar 

  34. A. Bumb, M.W. Brechbiel, P.L. Choyke, L. Fugger, A. Eggeman, D. Prabhakaran, J. Hutchinson, P.J. Dobson, Nanotechnology 19 (2008) 335601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. I. Karimzadeh, M. Aghazadeh, T. Doroudi, M.R. Ganjali, P.H. Kolivand, Adv. Phys.Chem 2017 (2017) (9437487) 1-7.

    Google Scholar 

  36. M. Galli, A. Guerrini, S. Cauteruccio, P. Thakare, D. Dova, F. Orsini, P. Arosio, C. Carrara, C. Sangregorio, A. Lascialtari, D. Maggioni, E. Licandro, RSC Adv 7 (2017) 15500–15512.

    Article  CAS  Google Scholar 

  37. O. Karaagac, H. Kockar, J. Magn. Magn. Mater 409, (2016) 116-123.

    Article  CAS  Google Scholar 

  38. F. Ozel, H. Kockar, J. Supercond. Nov. Magn 30, (2017) 2023–2027.

    Article  CAS  Google Scholar 

  39. F. Ozel, O. Karaagac, E. Tokay, F. Kockar, H. Kockar, J. Magn. Magn. Mater 474, (2019) 654-660.

    Article  CAS  Google Scholar 

  40. O. Karaagac, H. Kockar, J. Supercond. Nov. Magn 25, (2012) 2777–2781.

    Article  CAS  Google Scholar 

  41. F. Ozel, H. Kockar, J. Magn. Magn. Mater 373, (2015) 213-216.

    Article  CAS  Google Scholar 

  42. S. Laurent, S. Dutz, U.O. Hafeli, M. Mahmoudi, Adv. Colloid Interface Sci 166 (2011) 8–23.

    Article  PubMed  CAS  Google Scholar 

  43. Y.J. Wang, S. Xuan, M. Port, J.M. Idee, Curr. Pharm. Des 19 (2013) 6575-6593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. P.B. Santhosh, N.P. Ulrih, Cancer Lett 336 (2013) 8-17.

    Article  PubMed  CAS  Google Scholar 

  45. M. Mahmoudi, S. Sant, B. Way, S. Laurent, T. Sen, Adv. Drug Deliv. Rev 63 (2011) 24-46.

    Article  PubMed  CAS  Google Scholar 

  46. D.J. Alderman, P. Smith, Aquaculture196 (2001) 211- 243.

    Article  CAS  Google Scholar 

  47. Clinical and Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard- Third Edition. CLSI document M31-A3, 2008, Vol. 28: 8, (ISBN 1-56238-659-X).

  48. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests. Approved standard. NCCLS document M2-A5. Wayne, Pa: National Committee for Clinical Laboratory Standards, 1993.

Download references

Acknowledgements

The first author thanks University Grants Commission for Junior Research Fellowship (Sr. No-2061410045 Ref. No-22/06/2014 (i) EU-V).

Funding

Current research was funded by University Grants Commission (India) under the Junior Research Fellowship scheme (Sr.No-2061410045 Ref.No-22/06/2014 (i) EU-V).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Synthesis and analyses were performed by the first author Sherin Philip. The first draft of the manuscript was prepared by the first author and commented and modified by the corresponding author Sunny Kuriakose. Both the authors read and approved the final manuscript.

Corresponding author

Correspondence to Sunny Kuriakose.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philip, S., Kuriakose, S. Synthesis, Characterization and Antimicrobial Properties of Superparamagnetic α-Fe2O3 Nanoparticles Stabilized by Biocompatible Starch. J Clust Sci 32, 1339–1349 (2021). https://doi.org/10.1007/s10876-020-01898-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01898-1

Keywords

Navigation