Skip to main content
Log in

Biogenic Synthesis of Silver Nanoparticles Using Streptomyces spp. and their Antifungal Activity Against Fusarium verticillioides

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study reports the synthesis of silver nanoparticles (AgNPs) using haloalkaliphilic Streptomyces spp. characterization, and antifungal activity thereof. The UV visible spectra of synthesized AgNPs showed a characteristic absorption peak at 430 nm, due to the excitation of Surface Plasmon Resonance. Scanning electron microscopy and transmission electron microscopy images showed spherical shape NPs with an average particle size of 16.4 ± 2.2 nm. The crystalline structure of the AgNPs was confirmed by X-ray diffraction (XRD). Zeta potential analyses revealed that NPs were negatively charged (− 8.12 ± 3.87 mV). The synthesized AgNPs are significantly active against phytopathogenic fungi, Fusarium verticillioides and Ustilago maydis. Microscopic, histo- and bio-chemical investigation of AgNPs against F. verticillioides revealed that AgNPs at 100 μg concentration inhibits the hyphal growth and conidia germination, and ~ 42.85% reduction of ergosterol biosynthesis. The results of propidium iodide staining and high relative cell membrane conductivity confirmed AgNPs mediated damage to the membrane. Moreover, the AgNPs synthesized by Streptomyces spp. inhibit the growth of F. verticillioides could be due to the inhibition of ergosterol biosynthesis and membrane damage. In our knowledge, this is the first report demonstrating the anti F. verticillioides activity of AgNPs synthesized by Streptomyces spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. U. Basavaraj, N. Praveenkumar, S. Sabiha, S. Rupali, and B. Samprita (2012). Int. J. Pharm. Bio Sci. 2, 10–14.

    Google Scholar 

  2. J. Ahire and L. Dicks (2016). Curr. Microbiol. 73, 236–241.

    Article  PubMed  CAS  Google Scholar 

  3. F. Chen, M. Ding, X. Wang, and L. Shao (2004). Biomaterials 25, 723–727.

    Article  PubMed  CAS  Google Scholar 

  4. S. Aminabad, M. Farshbaf, and A. Akbarzadeh (2019). Cell Biochem. Biophys. 77, 123–137.

    Article  PubMed  CAS  Google Scholar 

  5. T. Wang, L. Yang, B. Zhang, and J. Liu (2010). Colloid Surf. B 80, 94–102.

    Article  CAS  Google Scholar 

  6. D. Muhammad and R. Rida (2017). Anal. Lett. 50, 50–62.

    Article  CAS  Google Scholar 

  7. F. Gholami, H. Mosmeri, M. Shavandi, M. Dastgheib, and A. Amoozegar (2019). Sci. Total Environ. 655, 633–640.

    Article  PubMed  CAS  Google Scholar 

  8. R. Rao, U. Kulkarni, J. Thomas, and P. Edwards (2000). Chem. Soc. Rev. 29, 27–35.

    Article  CAS  Google Scholar 

  9. M. Rai, A. Yadav, and A. Gade (2009). Biotechnol. Adv. 27, 76–83.

    Article  PubMed  CAS  Google Scholar 

  10. S. Zhao, M. Du, and Y. Tian (2012). World J. Microbiol. Biotechnol. 28, 2919–2927.

    Article  PubMed  Google Scholar 

  11. A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, I. Khan, R. Kumar, and M. Sastry (2003). Colloids Surf. B 28, 313–318.

    Article  CAS  Google Scholar 

  12. N. Kharat and D. Mendhulkar (2016). Mat. Sci. Eng. C 62, 719–724.

    Article  CAS  Google Scholar 

  13. P. Manivasagan, V. Jayachandran, S. Kalimuthu, S. Kannan, and K. Se-Kwon (2013). Biomed. Res. Int. 1–9.

  14. S. Kim, K. Houng, L. Hyun, and J. Kye (1991). J. Microbiol. Biotechnol. 1, 288–292.

    CAS  Google Scholar 

  15. Y. Tsibakhashvili, I. Kirkesali, T. Pataraya, A. Gurielidze, L. Kalabegishvili, N. Gvarjaladze, et al. (2011). Adv. Sci. Lett. 4, 3408–3417.

    Article  CAS  Google Scholar 

  16. S. Sadhasivam, P. Shanmugam, and K. Yun (2010). Colloids Surf. B 81, 358–362.

    Article  CAS  Google Scholar 

  17. L. Karthik, G. Kumar, V. Kirthi, A. Rahuman, and B. Rao (2014). Bioproc. Biosyst. Eng. 37, 261–267.

    Article  CAS  Google Scholar 

  18. M. Wypij, J. Czarnecka, M. Świecimska, H. Dahm, M. Rai, and P. Golinska (2018). World J. Microbiol. Biotechnol. 34, 23 (1–13).

  19. G. Agrios Plant Pathology, 5th ed (Elsevier Academic Press, San Diego, 2005).

    Google Scholar 

  20. A. Dhekney, T. Li, M. Van Aman, M. Dutt, J. Tattersall, T. Kelley, and J. Gray (2005). Fruit Crops Tropical Species 738, 743–748.

    Google Scholar 

  21. N. Krishnan, B. Velramar, and K. Velu (2019). Pest Biochem. Physiol. 155, 101–107.

    Article  CAS  Google Scholar 

  22. W. Bacon, E. Yates, M. Hinton, and F. Meredith (2001). Environ. Health Perspect 109, 325–332.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. J. Ahire, D. Neveling, and L. Dicks (2015). Curr. Microbiol. 71, 24–30.

    Article  PubMed  CAS  Google Scholar 

  24. A. Sidhu, S. Ghatelwal, K. Gumber, and A. Bala (2017). Appl. Nanosci. 7, 617–623.

    Article  CAS  Google Scholar 

  25. A. Petica, S. Gavriliu, M. Lungu, N. Buruntea, and C. Panzaru (2008). Mater Sci Eng B 152, 22–27.

    Article  CAS  Google Scholar 

  26. W. Kim, S. Kim, K. Lamsal, J. Kim, B. Kim, M. Jung, and S. Lee (2009). J. Microbiol. Biotechnol. 19, 760–764.

    PubMed  Google Scholar 

  27. K. Marathe, S. Kasar, A. Chaudhari, and V. Maheshwari (2016). Proc. Biochem. 51, 1650–1663.

    Article  CAS  Google Scholar 

  28. K. Marathe, A. Chaudhari, K. Kamalaja, and V. Maheshwari (2015). Biocatal. Agric. Biotechnol. 5, 58–68.

    Article  Google Scholar 

  29. R. Sharma, D. Acharya, S. Moghe, B. Shrivastava, M. Gangrade, T. Shripathi, and V. Ganesan (2014). Mat. Sci. Semicon. Proc. 23, 42–49.

    Article  CAS  Google Scholar 

  30. M. Elamawi, E. Al-Harbi, and A. Hendi (2018). Egypt J. Biol. Pest Co. 28, 28.

    Article  Google Scholar 

  31. H. Hassouni, I. Alaoui, K. Lamrani, G. Perraud, C. Augur, and S. Roussos (2007). Micol. Aplicada Int. 19, 7–14.

    Google Scholar 

  32. T. Gao, H. Zhou, W. Zhou, L. Hu, J. Chen, and Z. Shi (2016). Molecules 21, 770.

    Article  PubMed Central  CAS  Google Scholar 

  33. Y. Duan, C. Ge, S. Liu, C. Chen, and M. Zhou (2013). Pest Biochem. Physiol. 106, 61–67.

    Article  CAS  Google Scholar 

  34. H. Firstencel, M. Butt, and I. Carruther (1990). J Invertebr Pathol 55, 258–264.

    Article  Google Scholar 

  35. A. Arthington-Skaggs, H. Jradi, T. Desai, and J. Morrison (1999). J. Clin. Microbiol. 37, 3332–3337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. A. Bose, H. Keharia, and P. Deshpande (2013). Chin. Phys. Lett. 30, 128103.

    Article  CAS  Google Scholar 

  37. X. Wei, M. Luo, W. Li, L. Yang, X. Liang, et al. (2012). Bioresour Technol 103, 273–278.

    Article  PubMed  CAS  Google Scholar 

  38. S. Pirtarighat, M. Ghannadnia, and S. Baghshahi (2019). J. Nanostruct. Chem. 9, 1–9.

    Article  CAS  Google Scholar 

  39. X. Zhao, L. Yan, X. Xu, H. Zhao, Y. Lu, Y. Wang, et al. (2019). Appl. Microbiol. Biotechnol. 103, 1–4.

    Article  CAS  Google Scholar 

  40. S. Eppler, G. Rupprechter, A. Anderson, and A. Somorjai (2000). J Phys Chem B 104, 7286–7292.

    Article  CAS  Google Scholar 

  41. A. Omran, N. Nassar, A. Younis, A. Fatthallah, A. Hamdy, H. Shatoury, and N. El- Gendy (2018). J. Appl. Microbiol. 126, 138-154.

  42. S. Prakasham, K. Buddana, K. Yannam, and S. Guntuku (2012). J. Micobiol. Biotechnol. 22, 614–621.

    Article  CAS  Google Scholar 

  43. P. Balashanmugam, D. Balakumaran, R. Murugan, K. Dhanapal, and T. Kalaichelvan (2016). Microbiol. Res. 192, 52–64.

    Article  PubMed  CAS  Google Scholar 

  44. A. Richards, V. Veses, and A. Gow (2010). Fung Biol. Rev. 24, 93–105.

    Article  Google Scholar 

  45. A. Amro, P. Kotra, K. Wadu-Mesthrige, A. Bulychev, S. Mobashery, and Y. Liu (2000). Langmuir 16, 2789–2796.

    Article  CAS  Google Scholar 

  46. L. Elechiguerra, L. Burt, R. Morones, A. Camacho-Bragado, X. Gao, H. Lara, and J. Yacaman (2005). J. Nanobiotechnol. 3–6.

  47. K. Lamsal, W. Kim, H. Jung, S. Kim, S. Kim, and S. Lee (2011). Mycobiol 39, 194–199.

    Article  CAS  Google Scholar 

  48. A. Aguilar-Méndez, E. San Martín-Martínez, L. Ortega-Arroyo, G. Cobián-Portillo, and E. Sánchez-Espíndola (2011). J. Nanopart. Res. 13, 2525–2532.

  49. V. Mahdizadeh, N. Safaie, and F. Khelghatibana (2015). J. Crop. Prot. 4, 291–300.

    Google Scholar 

  50. M. Khatami, N. Zafarnia, H. Bami, I. Sharifi, and H. Singh (2018). J. Mycol. Med. 28, 37–644.

    Article  Google Scholar 

  51. A. Roy, O. Bulut, K. Mandal, and D. Yilmaz (2019). RSC Adv. 9, 2673–2702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. J. Du, Z. Hu, Z. Yu, H. Li, J. Pan, D. Zhao, and Y. Bai (2019). Mat. Sci. Eng. C 102, 247–253.

    Article  CAS  Google Scholar 

  53. Z. Xu General Plant Pathology (Higher Education Press, Beijing, 2009). (in Chinese).

    Google Scholar 

Download references

Acknowledgements

KRM acknowledges SERB (Science and Engineering Research Board, Govt. of India) for providing N-PDF (File No. N-PDF/2017/0000115 dated 6/10/2017). Authors are thankful to Dr. Bhardwaj, Jain Irrigation System Ltd., Jalgaon, India for kind help with fluorescent microscopy. Authors are also grateful to University Grants Commission, New Delhi and Department of Science and Technology, Govt. of India for making the research facilities available under the UGC-SAP and DST-FIST programs sanctioned at both places, the School of Life Sciences and the University Institute of Chemical Technology, KBCNMU, Jalgaon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Marathe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marathe, K., Naik, J. & Maheshwari, V. Biogenic Synthesis of Silver Nanoparticles Using Streptomyces spp. and their Antifungal Activity Against Fusarium verticillioides. J Clust Sci 32, 1299–1309 (2021). https://doi.org/10.1007/s10876-020-01894-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01894-5

Keywords

Navigation