Skip to main content
Log in

Atomistic Structures, Stabilities, Electronic Properties, and Chemical Bonding of Boron–Aluminum Mixed Clusters B3Al 0/−/+n (n = 2–6)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Neutral, anionic, and cationic B3Al 0/−/+n (n = 2–6) clusters were systematically explored using density functional theory and coupled cluster CCSD(T) methods to investigate the structural evolution of small mixed aluminum–boron clusters. The lowest energy structures of these clusters were obtained using an unbiased global minimum search, and their structural growth behaviors are discussed. The three boron atoms in B3Al 0/−/+n preferentially form a stable triangle, with additional Al atoms occupying the periphery of the boron triangle. For small clusters of n ≤ 3, the studied clusters show planar two–dimensional configurations. When n ≥ 4, the clusters prefer three–dimensional configurations. Average binding energies, fragmentation energies, second–order differences, HOMO–LUMO gaps, ionization potentials and electron affinities are discussed in detail. For cationic B3Al +n (n = 2–6) clusters, the even n systems are more stable than the odd n systems, while the stabilities of neutral B3Aln and anionic B3Al n clusters do not change significantly with growing n. The infrared spectrum and photoelectron spectroscopy of these clusters are simulated, which will be useful for future experimental research. We also compare the chemical bonding of neutral B3Aln (n = 2–6) clusters with their ionic clusters by AdNDP analysis.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Li, H. Wu, X.-B. Wang, and L.-S. Wang (1998). S-P hybridization and electron shell structures in aluminum clusters: A photoelectron spectroscopy study. Phys. Rev. Lett. 81, (9), 1909.

    Article  CAS  Google Scholar 

  2. A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W.-L. Li, C. Romanescu, L.-S. Wang, and A. I. Boldyrev (2014). Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47, (4), 1349–1358.

    Article  CAS  Google Scholar 

  3. M. T. Huynh and A. N. Alexandrova (2011). Persistent covalency and planarity in the BnAl 2−6−n and LiBnAl 6−n (n = 0–6) cluster ions. J. Phys. Chem. Lett. 2, (16), 2046–2051.

    Article  CAS  Google Scholar 

  4. M. Boyukata and Z. B. Guvenc (2011). Density functional study of AlBn clusters for n = 1–14. J. Alloys Compd. 509, (11), 4214–4234.

    Article  CAS  Google Scholar 

  5. X. Feng and Y. Luo (2007). Structure and stability of Al-doped boron clusters by the density-functional theory. J. Phys. Chem. A 111, (12), 2420–2425.

    Article  CAS  Google Scholar 

  6. Z.-Y. Jiang, X.-M. Luo, S.-T. Li, and S.-Y. Chu (2006). Structures and stability of B-doped Al anions: AlnB and AlnB2 (n = 1–7). Int. J. Mass Spectrom. 252, (3), 197–203.

    Article  CAS  Google Scholar 

  7. Z.-Y. Jiang, C.-J. Yang, and S.-T. Li (2005). Structures and stability of B-doped Al clusters: AlnB and AlnB2 (n = 1–7). J. Chem. Phys. 123, (20), 204315.

    Article  CAS  Google Scholar 

  8. J. Gu, C. Wang, Y. Cheng, L. Zhang, X. Yang (2014) Probing the structural and electronic properties of boron cluster anions doped with one or two aluminum atoms. Comput. Theor. Chem. 67–74.

  9. D. T. T. Mai, H. T. Pham, N. M. Tam, and M. T. Nguyen (2019). Geometry and bonding of small binary boron–aluminum clusters BnAln (n = 1–7): Electron donation and interlocking aromaticity. Chem. Phys. Lett. 714, 87–93.

    Article  CAS  Google Scholar 

  10. C. Romanescu, A. P. Sergeeva, W.-L. Li, A. I. Boldyrev, and L.-S. Wang (2011). Planarization of B7 and B12 clusters by isoelectronic substitution: AlB6 and AlB11. J. Am. Chem. Soc. 133, (22), 8646–8653.

    Article  CAS  Google Scholar 

  11. W.-L. Li, C. Romanescu, T. R. Galeev, L.-S. Wang, and A. I. Boldyrev (2011). Aluminum avoids the central position in AlB9 and AlB10: Photoelectron spectroscopy and ab Initio study. J. Phys. Chem. A 115, (38), 10391–10397.

    Article  CAS  Google Scholar 

  12. T. R. Galeev, C. Romanescu, W.-L. Li, L.-S. Wang, and A. I. Boldyrev (2011). Valence isoelectronic substitution in the B8 and B9 molecular wheels by an Al dopant atom: Umbrella-like structures of AlB7 and AlB8. J. Chem. Phys. 135, (10), 104301.

    Article  CAS  Google Scholar 

  13. B. Song, Y. Zhou, H.-M. Yang, J.-H. Liao, L.-M. Yang, X.-B. Yang, and E. Ganz (2019). Two-Dimensional Anti-Van’t Hoff/Le Bel Array AlB6 with High Stability, Unique Motif, Triple Dirac Cones, and Superconductivity. J. Am. Chem. Soc. 141, (8), 3630–3640.

    Article  CAS  Google Scholar 

  14. A. P. Sergeeva, B. B. Averkiev, H. J. Zhai, A. I. Boldyrev, and L. S. Wang (2011). All–boron analogues of aromatic hydrocarbons: B17 and B18. J. Chem. Phys. 134, (22), 224304.

    Article  CAS  Google Scholar 

  15. A. D. Becke (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, (7), 5648–5652.

    Article  CAS  Google Scholar 

  16. C. Lee, W. T. Yang, and R. G. Parr (1988). Development of the Colle-Salvetti correlation–energy formula into a functional of the electron density. Phys. Rev. B 37, (2), 785–789.

    Article  CAS  Google Scholar 

  17. J. S. Binkley, J. A. Pople, and W. J. Hehre (1980). Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 102, (3), 939–947.

    Article  CAS  Google Scholar 

  18. M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre (1982). Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 104, (10), 2797–2803.

    Article  CAS  Google Scholar 

  19. G. D. Purvis and R. J. Bartlett (1982). A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 76, (4), 1910–1918.

    Article  CAS  Google Scholar 

  20. D. Y. Zubarev and A. I. Boldyrev (2008). Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, (34), 5207–5217.

    Article  CAS  Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E Knox,. J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Cioslowski (2013) Gaussian 09, Revision D. 01; Gaussian, Inc. Wallingford, CT.

  22. T. Lu and F. W. Chen (2012). Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, (5), 580–592.

    Article  CAS  Google Scholar 

  23. P. Pyykkö (2014). Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J. Phys. Chem. A. 119, (11), 2326–2337.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L. M. W, D. Z, and L.–M. Y. gratefully acknowledge support from the National Natural Science Foundation of China (21673087, 21873032, 21903032, 22073033), startup fund (2006013118 and 3004013105) from Huazhong University of Science and Technology, and the Fundamental Research Funds for the Central Universities (2019kfyRCPY116). The authors thank the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for supercomputing resources. The work was carried out at LvLiang Cloud Computing Center of China, and the calculations were performed on TianHe-2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Ming Yang or Guoliang Li.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5056 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, L., Zhou, D., Yang, LM. et al. Atomistic Structures, Stabilities, Electronic Properties, and Chemical Bonding of Boron–Aluminum Mixed Clusters B3Al 0/−/+n (n = 2–6). J Clust Sci 32, 1261–1276 (2021). https://doi.org/10.1007/s10876-020-01884-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01884-7

Keywords

Navigation