Skip to main content
Log in

Environmentally Benign and Large-Scale Synthesis of Monodisperse Oleate-Protected Silver Nanoparticles in Ethanol

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

An environmentally benign solvothermal process was introduced to synthesize monodisperse silver nanoparticles (Ag NPs). Silver nitrate (AgNO3) was reduced by ethanol which was also used for recyclable solvent. The as-synthesized Ag NPs were stabilized by oleate. Effects of reaction temperature, reaction time, AgNO3 concentration as well as molar ratio of sodium oleate and AgNO3 on the formation and surface plasmon resonance (SPR) were determined by means of UV–Vis spectrophotometer. TEM and XRD were used to characterize the size, morphology and crystalline structure of Ag NPs. The excessive AgNO3 over sodium oleate and high concentration of AgNO3 are favorable for the synthesis of monodisperse Ag NPs in large scale. The characteristic SPR absorption of Ag NPs centers at ca. 430 nm despite of reaction temperature, reaction time and even AgNO3 concentration. The nucleation and growth of Ag NPs completed in a very short period of time, showing the high efficiency of our synthetic route for the synthesis of uniform Ag NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Natsuki and T. Abe (2011). J. Colloid Interf. Sci. 359, 19.

    CAS  Google Scholar 

  2. Y. Xia, X. Xia, Y. Wang, and S. Xie (2013). Mrs Bull. 38, 335.

    CAS  Google Scholar 

  3. C. C. M. Neumann, E. Laborda, K. Tschulik, K. R. Ward, and R. G. Compton (2013). Nano Res. 6, 511.

    CAS  Google Scholar 

  4. R. Sahraei, J. Cheraghi, R. Hushmandfar, S. Abbasi, S. S. Mortazavi, H. Noorizadeh, and A. Farmany (2012). J. Chin. Chem. Soc. 60, 195.

    Google Scholar 

  5. E. A. Terenteva, V. V. Apyari, E. V. Kochuk, S. G. Dmitrienko, and Y. A. Zolotov (2017). J. Anal. Chem. 72, 1138.

    CAS  Google Scholar 

  6. B. Ruttkay-Nedecky, S. Skalickova, M. Kepinska, K. Cihalova, M. Docekalova, M. Stankova, D. Uhlirova, C. Fernandez, J. Sochor, H. Milnerowicz, M. Beklova, and R. Kizek (2019). J. Nanosci. Nanotechnol. 19, 2762.

    PubMed  CAS  Google Scholar 

  7. C. Marambio-Jones and E. M. V. Hoek (2010). J. Nanopart. Res. 12, 1531.

    CAS  Google Scholar 

  8. Y. Yang, S. Matsubara, L. Xiong, T. Hayakawa, and M. Nogami (2007). J. Phys. Chem. C 111, 9095.

    CAS  Google Scholar 

  9. B. W. Yang, Z. Y. Guo, Z. M. Liu, M. M. Wan, and X. C. Qin (2013). Spectrosc. Spect. Anal. 33, 1816.

    CAS  Google Scholar 

  10. D. S. Ahlawat, R. Kumari, and I. Yadav (2014). Int. J. Nanosci. 13, 1450004.

    Google Scholar 

  11. J. P. Ge, W. Chen, L. P. Liu, and Y. D. Li (2006). Chem-eur J. 12, 6552.

    PubMed  CAS  Google Scholar 

  12. X. Wang, J. Zhuang, Q. Peng, and Y. D. Li (2005). Nature 437, 121.

    PubMed  CAS  Google Scholar 

  13. H. Xu and K. S. Suslick (2010). ACS Nano 4, 3209.

    PubMed  CAS  Google Scholar 

  14. M. Ider, K. Abderrafi, A. Eddahbi, S. Ouaskit, and A. Kassiba (2017). J. Clust. Sci. 28, 1051.

    CAS  Google Scholar 

  15. A. Pal, S. Shah, and S. Devi (2009). Mater. Chem. Phys. 114, 530.

    CAS  Google Scholar 

  16. O. A. Boryak, M. V. Kosevich, V. V. Chagovets, and V. S. Shelkovsky (2017). J. Anal. Chem. 72, 1289.

    CAS  Google Scholar 

  17. J. Helmlinger, M. Heise, M. Heggen, M. Ruck, and M. Epple (2015). RSC Adv. 5, 92144.

    CAS  Google Scholar 

  18. M. N. Nadagouda, T. F. Speth, and R. S. Varma (2011). Acc. Chem. Res. 44, 469.

    PubMed  CAS  Google Scholar 

  19. E. P. Marta, B. M. Klaus, G. Marina, H. Zsuzsanna, K. Janina, and K. Katrin (2016). Beilstein J. Nanotechnol. 7, 834.

    Google Scholar 

  20. K. Gudikandula and S. C. Maringanti (2016). J. Exp. Nanosci. 11, 714.

    CAS  Google Scholar 

  21. S. Perni, V. Hakala, and P. Prokopovich (2014). Colloid Surface A 460, 219.

    CAS  Google Scholar 

  22. S. Iravani (2011). Green Chem. 13, 2638.

    CAS  Google Scholar 

  23. K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh (2010). Nanomed. Nanotechnol. 6, 257.

    CAS  Google Scholar 

  24. S. Chen, H. B. Lee, and R. L. Penn (2019). J. Phys. Chem. C 123, 12444.

    CAS  Google Scholar 

  25. Z. Leng, D. Wu, Q. Yang, S. Zeng, and W. Xia (2018). Optik 154, 33.

    CAS  Google Scholar 

  26. A. I. Titkov, E. Y. Gerasimov, M. V. Shashkov, O. A. Logutenko, N. V. Bulina, Y. M. Yukhin, and N. Z. Lyakhov (2016). Colloid J. 78, 515.

    CAS  Google Scholar 

  27. X. Gao, D. Li, Z. Chen, X. Mei, and Y. Wang (2016). New J. Chem. 40, 7265.

    CAS  Google Scholar 

  28. Y. Zhang, R. Shi, and P. Yang (2014). J. Nanosci. Nanotechnol. 14, 3011.

    PubMed  CAS  Google Scholar 

  29. G. Prozorova, A. Pozdnyakov, N. Kuznetsova, S. Korzhova, A. Emelyanov, T. Ermakova, T. Y. Fadeeva, and L. Sosedova (2014). Int. J. Nanomed. 9, 1883.

    Google Scholar 

  30. Z. Huang, H. Jiang, P. Liu, J. Sun, D. Guo, J. Shan, and N. Gu (2015). J. Mater. Chem. A 3, 1925.

    CAS  Google Scholar 

  31. T. K. Sau and A. L. Rogach (2010). Adv. Mater. 22, 1781.

    PubMed  CAS  Google Scholar 

  32. I. A. Wani, S. Khatoon, A. Ganguly, J. Ahmed, A. K. Ganguli, and T. Ahmad (2010). Mater. Res. Bull. 45, 1033.

    CAS  Google Scholar 

  33. G. Vanitha, K. Rajavel, G. Boopathy, V. Veeravazhuthi, and P. Neelamegam (2016). Synth. React. Inorg. M. 47, 761.

    Google Scholar 

  34. D. Wei, W. Sun, W. Qian, Y. Ye, and X. Ma (2009). Carbohyd. Res. 344, 2375.

    CAS  Google Scholar 

  35. C. Tian, B. Mao, E. Wang, Z. Kang, Y. Song, C. Wang, S. Li, and L. Xu (2007). Nanotechnology 18, 285607.

    Google Scholar 

  36. Z. Xu and G. Hu (2012). RSC Adv. 2, 11404.

    CAS  Google Scholar 

  37. K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak (2015). Dalton T. 44, 17883.

    CAS  Google Scholar 

  38. D. Wang and Y. Li (2011). Inorg. Chem. 50, 5196.

    PubMed  CAS  Google Scholar 

  39. H. H. Lin and K. M. Chi (2011). J. Nanosci. Nanotechnol. 11, 1193.

    PubMed  CAS  Google Scholar 

  40. A. Sarkar, S. Kapoor, and T. Mukherjee (2010). Res. Chem. Intermediat. 36, 411.

    CAS  Google Scholar 

  41. Y. M. Chen and H. W. Jia (2014). Mater. Lett. 132, 389.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of Hunan Province (2017JJ3264).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanming Chen or Xiaobo Nie.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Chen, Y. & Nie, X. Environmentally Benign and Large-Scale Synthesis of Monodisperse Oleate-Protected Silver Nanoparticles in Ethanol. J Clust Sci 32, 899–905 (2021). https://doi.org/10.1007/s10876-020-01852-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01852-1

Keywords

Navigation