Skip to main content
Log in

Synthesis and Bio-physical Characterization of Crustin Capped Zinc Oxide Nanoparticles, and Their Photocatalytic, Antibacterial, Antifungal and Antibiofilm Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Bio-molecule assisted synthesis of nanoparticles using protein templates and the self-assembly of the bio-molecules together with small peptides, denatured protein, and DNA is a new advancement. Specific interactions with nanoparticles ultimately dictate the size and crystallinity of the nanomaterials and the formation of nanoparticles using protein for structural integrity. Here, we are using protein-based synthesis method for preparing highly crystalline ZnONPs. Crustin(Cr)-capped ZnONPs were synthesized and confirmed by Ultraviolet-vis spectroscopy (UV–Vis), Fourier-transform infrared spectroscopy (FTIR), Raman, X-ray diffraction (XRD), High-resolution transmission electron microscopy (HR-TEM), and Zeta potential analysis. UV–Vis spectrum revealed the preliminary confirmation of the Cr-ZnONPs. By using XRD patterns, confirmed the crystalline structure of Cr-ZnONPs. In addition, TEM analysis revealed that the particle size measurements are within the 50 nm range. Further, Cr-ZnONPs tested against different Gram-negative and Gram-positive bacteria at 50 µg/mL. The great potential of the antibacterial and biofilm control ability of Cr-ZnONPs at 50 µg/mL was observed. Moreover, the control of thrush infective fungal Candida albicans cells and eco-toxicological analysis of Cr-ZnONPs showed that no increase in toxicity up to 100 µg/L was observed in Ceriodaphnia cornuta. Overall, Cr-ZnONPs can be used for potential photocatalytic, antibacterial, antifungal and antibiofilm applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Zhang, X. Wang, W. Shan, B. Wu, H. Fan, X. Yu, Y. Tang, and P. Yang (2005). Angew. Chem. Int. Ed. Engl. 14, 615–617.

    Google Scholar 

  2. Y. Zhang, X. Yu, X. Wang, W. Shan, P. Yang, and Y. Tang (2004). Chem. Commun. 24, 2882–2883.

    Google Scholar 

  3. S. S. Liang, H. Makamba, S. Y. Huang, and S. H. Chen (2006). J. Chromatogr. A 1116, 38–45.

    PubMed  CAS  Google Scholar 

  4. S. Hameed, J. Iqbal, M. Ali, A. T. Khalil, B. A. Abbasi, M. Numan, and Z. K. Shinwari (2019). Mater. Res. Express. 6, 102005.

    CAS  Google Scholar 

  5. J. Iqbal, B. A. Abbasi, A. Munir, S. Uddin, S. Kanwal, and T. Mahmood (2020). Microsc. Res. Techniq.. https://doi.org/10.1002/jemt.23460.

    Article  Google Scholar 

  6. B. A. Abbasi, J. Iqbal, F. Kiran, R. Ahmad, S. Kanwal, A. Munir, S. Uddin, J. A. Nasir, W. Chalgham, and T. Mahmood (2020). J. Mol. Struct. 1218, 128490.

    CAS  Google Scholar 

  7. P. Kumar, P. Kumar, A. Deep, and L. M. Bharadwaj (2013). Appl. Nanosci. 3, 141–144.

    CAS  Google Scholar 

  8. C. C. Huang, R. S. Aronstam, D. R. Chen, and Y. W. Huang (2010). Toxicol. In Vitro 24, 45–55.

    PubMed  CAS  Google Scholar 

  9. A. S. Prasad (2013). Adv. Nutr. 4, 176–190.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Y. Suzumoto, M. Okuda, and I. Yamashita (2012). Cryst. Growth Des. 12, 4130–4134.

    CAS  Google Scholar 

  11. J. Iqbal, B. A. Abbasi, R. Ahmad, M. Mahmoodi, A. Munir, S. A. Zahra, A. Shahbaz, M. Shaukat, S. Kanwal, S. Uddin, and T. Mahmood (2020). Biomedicines 8, 117.

    PubMed Central  CAS  Google Scholar 

  12. B. A. Abbasi, J. Iqbal, R. Ahmad, L. Zia, S. Kanwal, T. Mahmood, C. Wang, and J. T. Chen (2020). Biomolecules 10, 38.

    CAS  Google Scholar 

  13. B. A. Abbasi, J. Iqbal, T. Mahmood, A. Qyyum, and S. Kanwal (2019). Appl. Organomet. Chem. 33, e4947.

    Google Scholar 

  14. E. Santillán-Urquiza, F. Arteaga-Cardona, C. Torres-Duarte, B. Cole, B. Wu, M. A. Méndez-Rojas, and G. N. Cherr (2017). R. Soc. Open Sci. 4, 170480.

    PubMed  PubMed Central  Google Scholar 

  15. D. M. Goncalves and D. Girard (2014). Toxicol. In Vitro. 28, 926–931.

    PubMed  CAS  Google Scholar 

  16. R. Rekha, B. Vaseeharan, R. Ishwarya, M. Anjugam, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, M. N. Al-anbr, and M. Govindarajan (2018). Mol. Immunol. 101, 396–408.

    PubMed  CAS  Google Scholar 

  17. M. Anjugam, A. Iswarya, and B. Vaseeharan (2015). Fish Shellfish Immunol. 48, 196–205.

    PubMed  Google Scholar 

  18. M. Divya, B. Vaseeharan, M. Anjugam, A. Iswarya, S. Karthikeyan, P. Velusamy, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and C. Vagvolgyi (2018). Int. J. Biol. Macromol. 114, 864–873.

    PubMed  CAS  Google Scholar 

  19. A. Iswarya, M. Anjugam, and B. Vaseeharan (2017). Fish Shellfish Immunol. 68, 54–64.

    PubMed  CAS  Google Scholar 

  20. S. Jayanthi, R. Iswarya, S. Karthikeyan, and B. Vaseeharan (2017). Fish Shellfish Immunol. 62, 227–237.

    PubMed  CAS  Google Scholar 

  21. R. Ishwarya, B. Vaseeharan, A. Iswarya, and S. Karthikeyan (2016). Fish Shellfish Immunol. 59, 447–455.

    PubMed  CAS  Google Scholar 

  22. M. Divya, B. Vaseeharan, M. Abinaya, S. Vijayakumar, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Photochem. Photobiol. B 178, 211–218.

    PubMed  Google Scholar 

  23. A. Iswarya, B. Vaseeharan, M. Anjugam, B. Ashokkumar, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). Colloids Surf. B Biointerfaces 158, 257–269.

    PubMed  CAS  Google Scholar 

  24. M. Anjugam, B. Vaseeharan, A. Iswarya, M. Divya, N. Marimuthu Prabhu, and K. Sankaranarayanan (2018). Microb. Pathog. 115, 31–40.

    PubMed  CAS  Google Scholar 

  25. S. Jayanthi, S. Shanthi, B. Vaseeharan, N. Gopi, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Photochem. Photobiol. B 170, 208–216.

    PubMed  CAS  Google Scholar 

  26. A. Bagabas, A. Alshammari, M. F. A. Aboud, and H. Kosslick (2013). Nanoscale Res. Lett. 8, 516.

    PubMed  PubMed Central  Google Scholar 

  27. S. Vijayakumar and B. Vaseeharan (2018). Adv. Powder Technol. 29, 2331–2345.

    CAS  Google Scholar 

  28. S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, N. Gobi, S. Ravichandran, S. Karthi, B. Ashok kumar, and N. Sivakumar (2017). Microb. Pathog. 110, 140–151.

    PubMed  CAS  Google Scholar 

  29. M. Abinaya, B. Vaseeharan, M. Divya, A. Sharmili, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2018). J. Trace Elem. Med. Biol. 45, 93–103.

    PubMed  CAS  Google Scholar 

  30. S. Adhikari, R. Gupta, A. Surin, T. S. Kumar, S. Chakraborty, D. Sarkar, and G. Madras (2016). RSC Adv. 6, 1–13.

    CAS  Google Scholar 

  31. R. Rekha, M. Divya, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, M. N. Al-anbr, R. Pavela, and B. Vaseeharan (2019). J. Photochem. Photobiol. B 199, 111620.

    PubMed  CAS  Google Scholar 

  32. M. D. Ferrando, E. Sancho, and E. Andreu-Moline (1995). J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 30, 815–825.

    Google Scholar 

  33. A. Bownik, Z. Stępniewska, and T. Skowroński (2015). Comp. Biochem. Physiol. C 168, 2–10.

    CAS  Google Scholar 

  34. R. Yuvakkumar, J. Suresh, A. J. Nathanael, M. Sundrarajan, and S. I. Hong (2014). Mater. Sci. Eng. C 41, 17–27.

    CAS  Google Scholar 

  35. P. Suganya, B. Vaseeharan, S. Vijayakumar, B. Balan, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Photochem. Photobiol. B 173, 404–411.

    PubMed  CAS  Google Scholar 

  36. B. Banumathi, B. Vaseeharan, R. Ishwarya, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). Parasitol. Res. 116, 1637–1651.

    PubMed  Google Scholar 

  37. B. A. Fahimmunisha, R. Ishwarya, M. S. AlSalhi, S. Devanesan, M. Govindarajan, and B. Vaseeharan (2020). J. Drug Deliv. Sci. Technol. 55, 101465.

    CAS  Google Scholar 

  38. R. Ishwarya, B. Vaseeharan, S. Kalyani, B. Banumathi, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, M. N. Al-Anbr, J. M. Khaled, and G. Benelli (2018). J. Photochem. Photobiol. B 178, 249–258.

    PubMed  CAS  Google Scholar 

  39. S. K. Mishra, R. K. Srivastava, and S. G. Prakash (2012). J. Alloys Compd. 539, 1–6.

    CAS  Google Scholar 

  40. D. Gnanasangeetha and T. D. Sarala (2014). Int. J. Pharm. Sci. Res. 5, 2866–2873.

    CAS  Google Scholar 

  41. C. B. Anders, J. J. Chess, D. G. Wingett, and A. Punnoose (2015). Nanoscale Res. Lett. 10, 448.

    PubMed  PubMed Central  Google Scholar 

  42. S. Yan, W. He, C. Sun, X. Zhang, H. Zhao, Z. Li, W. Zhou, X. Tian, X. Sun, and X. Han (2009). Dyes Pigm. 80, 254–258.

    CAS  Google Scholar 

  43. D. Kumari, L. Sheikh, S. Bhattacharya, T. J. Webster, and S. Nayar (2017). Int. J. Nanomed. 12, 3605–3616.

    CAS  Google Scholar 

  44. Y. Zhao, L. Li, P. F. Zhang, W. Shen, J. Liu, F. F. Yang, H. B. Liu, and Z. H. Hao (2015). Plos One 10, e0140499.

    PubMed  PubMed Central  Google Scholar 

  45. A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad (2015). Nano-Micro. Lett. 7, 219–242.

    CAS  Google Scholar 

  46. K. Lingaraju, H. Raja Naika, H. Nagabhushana, and G. Nagaraju (2019). Biocatal. Agric. Biotechnol. 18, 100894.

    Google Scholar 

  47. M. Divya, M. Govindarajan, S. Karthikeyan, E. Preetham, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, T. N. Almanaa, and B. Vaseeharan (2020). Microb. Pathog. 141, 103992.

    PubMed  CAS  Google Scholar 

  48. R. Ishwarya, R. Jayakumar, M. Abinaya, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, M. N. Al-Anbr, and B. Vaseeharan (2019). Int. J. Biol. Macromol. 139, 688–696.

    PubMed  CAS  Google Scholar 

  49. M. Gambino, M. A. Ali Ahmed, F. Villa, and F. Cappitelli (2017). Int. Biodeter. Biodegr. 122, 92–99.

    CAS  Google Scholar 

  50. K. Steffy, G. Shanthi, A. S. Maroky, and S. Selvakumar (2018). J. Trace Elem. Med. Biol. 50, 229–239.

    PubMed  CAS  Google Scholar 

  51. H. Yang, Q. Zhang, Y. Chen, Y. Huang, F. Yang, and Z. Lu (2018). Carbohydr. Polym. 201, 162–171.

    PubMed  CAS  Google Scholar 

  52. M. Amini and M. Ashrafi (2016). Nano. Chem. Res. 1, 79–86.

    CAS  Google Scholar 

  53. X. Luo, S. Zhang, and X. Lin (2013). J. Hazard Mater. 260, 112–121.

    PubMed  CAS  Google Scholar 

  54. S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, N. Gopi, P. Ekambaram, R. Pachaiappan, P. Velusamy, K. Murugan, G. Benelli, R. Suresh Kumar, and M. Suriyanarayanamoorthy (2017). Microb. Pathog. 102, 173–183.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors (SM, KAH, FAM, and ZA) express their sincere appreciation to the Research Supporting Project No. RSP-2020-93 the King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baskaralingam Vaseeharan.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekha, R., Mahboob, S., Ramya, A.K. et al. Synthesis and Bio-physical Characterization of Crustin Capped Zinc Oxide Nanoparticles, and Their Photocatalytic, Antibacterial, Antifungal and Antibiofilm Activity. J Clust Sci 32, 843–855 (2021). https://doi.org/10.1007/s10876-020-01849-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01849-w

Keywords

Navigation