Skip to main content
Log in

Solvent-Mediated 1,ω-Bis(isoquinoline)alkane/Iodobismuthate Hybridized Isomers: Structures and Packing Mode Dependent-Photoluminescence/Thermochromisms

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The hybridization of 1,4-bis(isoquinoline)butane (BIQBT2+) cation with iodobismuthate under different solvents produce two isomers α-[(BIQBT)(BiI4)2]n (α-1, in CH3OH/H2O mixed solvent, Triclinic system with P-1 space group) and β-[(BIQBT)(BiI4)2]n (β-1, in CH3OH, Monoclinic system with P21/c space group). The 1-D (BiI4) n−n chains are constructed from the opposite edge-sharing BiI6 octahedra. The (BIQBT)2+ in α-isomer adopts the planar configuration, and that in β-isomer presents the chair-like configuration, as a result, different packing modes (intercalating quasi-3-D mode for α-1 and interlocking 2-D mode for β-1) are observed. Interestingly, from α-1 to β-1, distortion degree of BiI6 octahedron and π–π stacking interaction decrease, but hydrogen bonds number increase. Consequently, due to different packing mode, photoluminescence/thermochromisms can be found in α-1, but those of β-1 are vanished, Theoretical calculation was conducted to disclose the structure/thermochromism correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Wei, Z. Y. Cheng, and J. Lin (2019). Chem. Soc. Rev. 48, 310.

    CAS  PubMed  Google Scholar 

  2. P. F. Gong, F. Liang, L. Kang, X. G. Chen, J. G. Qin, Y. C. Wu, and Z. S. Lin (2019). Coord. Chem. Rev. 380, 83.

    CAS  Google Scholar 

  3. Y. X. Zhao and K. Zhu (2016). Chem. Soc. Rev. 45, 655.

    CAS  PubMed  Google Scholar 

  4. O. Nazarenko, M. R. Kotyrba, S. Yakunin, M. Aebli, G. Rainò, B. M. Benin, M. Wörle, and M. V. Kovalenko (2018). J. Am. Chem. Soc. 140, 3850.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. C. Sun, G. Xu, X. M. Jiang, G. E. Wang, P. Y. Guo, M. S. Wang, and G. C. Guo (2018). J. Am. Chem. Soc. 140, 2805.

    CAS  PubMed  Google Scholar 

  6. Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma (2017). Nat. Commun. 8, 14051.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. L. M. Wu, X. T. Wu, and L. Chen (2009). Coord. Chem. Rev. 253, 2787.

    CAS  Google Scholar 

  8. G. A. Bowmaker, P. C. Junk, A. M. Lee, B. W. Skelton, and A. H. White (1998). Aust. J. Chem. 51, 293.

    CAS  Google Scholar 

  9. S. S. Nagapetyan, A. R. Arakelova, E. A. Ziger, V. M. Koshkin, Y. T. Struchkov, and V. E. Shklover (1989). Russ. J. Inorg. Chem. 34, 2244.

    CAS  Google Scholar 

  10. A. Cornia, A. C. Fabretti, R. Grandi, and W. Malavasi (1994). J. Chem. Crystallogr. 24, 277.

    CAS  Google Scholar 

  11. A. Mousdis, G. C. Papavassiliou, A. Terzis, and C. P. Raptopoulou (1998). Z. Naturforsch. B Chem. Sci. 53, 927.

    CAS  Google Scholar 

  12. J. M. Harrowfield, H. Miyamae, B. W. Skelton, A. A. Soudi, and A. H. White (1996). Aust. J. Chem. 49, 1157.

    CAS  Google Scholar 

  13. A. J. Dennington and M. T. Weller (2016). Dalton Trans. 45, 17974.

    CAS  PubMed  Google Scholar 

  14. W. H. Bi, N. Louvain, N. Mercier, J. Luc, I. Rau, F. Kajzar, and B. Sahraoui (2008). Adv. Mater. 20, 1013.

    CAS  Google Scholar 

  15. N. Mercier, A. L. Barres, M. Giffard, I. Rau, F. Kajzar, and B. Sahraoui (2006). Angew. Chem. Int. Ed. 45, 2100.

    CAS  Google Scholar 

  16. L. S. Song, H. M. Wang, Y. Y. Niu, H. W. Hou, and Y. Zhu (2012). CrystEngComm 14, 4927.

    CAS  Google Scholar 

  17. P. Wang, Z. R. Chen, and H. H. Li (2019). Chin. J. Struct. Chem. 38, 1485.

    CAS  Google Scholar 

  18. B. B. Yu, X. Zhang, Y. Jiang, J. S. Hu, and L. J. Wan (2015). J. Am. Chem. Soc. 137, 2211.

    CAS  PubMed  Google Scholar 

  19. G. X. Cai, Q. Q. Wu, M. F. Yin, L. T. Fan, M. Li, H. H. Li, and Z. R. Chen (2016). J. Clust. Sci. 27, 513.

    Google Scholar 

  20. H. L. Jiang, T. A. Makal, and H. C. Zhou (2013). Coord. Chem. Rev. 257, 2232.

    CAS  Google Scholar 

  21. X. Kuang, X. Wu, R. Yu, J. P. Donahue, J. Huang, and C. Z. Lu (2010). Nat. Chem. 2, 461.

    CAS  PubMed  Google Scholar 

  22. B. Almarzoqi, A. V. George, and N. S. Isaacs (1986). Tetrahedron 42, 601.

    CAS  Google Scholar 

  23. P. Kubelka and F. Munk (1931). Z. Tech. Phys. 12, 593.

    Google Scholar 

  24. J. P. Perew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Google Scholar 

  25. M. Segall, P. Lindan, M. Probert, C. Pickard et al (2006), Materials Studio CASTEP version 4.1.

  26. G. M. Sheldrick SHELXL-97. Program for X-ray crystal structure refinement (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  27. C. Hrizi, N. Chaari, Y. Abid, N. Chniba-Boudjada, and S. Chaabouni (2012). Polyhedron 46, 41.

    CAS  Google Scholar 

  28. N. A. Yelovik, A. V. Mironov, M. A. Bykov, A. N. Kuznetsov, A. V. Grigorieva, Z. Wei, E. V. Dikarev, and A. V. Shevelkov (2016). Inorg. Chem. 55, 4132.

    CAS  PubMed  Google Scholar 

  29. A. Gagor, M. Weclawik, B. Bondzior, and R. Jakubas (2015). CrystEngComm 17, 3286.

    CAS  Google Scholar 

  30. D. H. Wang, L. M. Zhao, X. Y. Lin, Y. K. Wang, W. T. Zhang, K. Y. Song, H. H. Li, and Z. R. Chen (2018). Inorg. Chem. Front 5, 1162.

    CAS  Google Scholar 

  31. C. C. Lin, P. Wang, L. Jin, H. H. Li, S. K. Lin, and Z. R. Chen (2015). J. Clust. Sci. 26, 1011.

    CAS  Google Scholar 

  32. A. N. Usoltsev, M. Elshobaki, S. A. Adonin, L. A. Frolova, T. Derzhavskaya, P. A. Abramov, D. V. Anokhin, I. V. Korolkov, S. Y. Luchkin, N. N. Dremova, K. J. Stevenson, M. N. Sokolov, V. P. Fedinad, and P. A. Troshin (2019). J. Mater. Chem. A 7, 5957.

    CAS  Google Scholar 

  33. J. Heine (2015). Dalton Trans. 44, 10069.

    CAS  PubMed  Google Scholar 

  34. I. D. Gorokh, S. A. Adonin, D. G. Samsonenko, M. N. Sokolov, and V. P. Fedin (2018). Russ. J. Coord. Chem. 44, 502.

    CAS  Google Scholar 

  35. P. A. Buikin, A Yu Rudenko, A. B. Ilyukhin, N. P. Simonenko, Kh E Yorov, and V Yu Kotov (2020). Russ. J. Coord. Chem. 46, 111.

    CAS  Google Scholar 

  36. V. Y. Kotov, E. S. Safiullina, A. B. Ilyukhin, P. A. Buikin, K. P. Birin, and K. E. Yorov (2019). J. Mol. Struct. 1195, 944.

    CAS  Google Scholar 

  37. P. A. Buikin, A. Y. Rudenko, A. E. Baranchikov, A. B. Ilyukhin, and V. Y. Kotov (2018). Russ. J. Coord. Chem. 44, 373.

    CAS  Google Scholar 

  38. V. Y. Kotov, A. B. Ilyukhin, A. A. Korlyukov, A. F. Smolyakovcd, and S. A. Kozyukhin (2018). New J. Chem. 42, 6354.

    CAS  Google Scholar 

  39. S. A. Adonin, I. D. Gorokh, D. G. Samsonenko, O. V. Antonova, I. V. Korolkov, M. N. Sokolov, and V. P. Fedin (2018). Inorg. Chim. Acta 469, 32.

    CAS  Google Scholar 

  40. V. Y. Kotov, A. B. Ilyukhin, N. P. Simonenko, and S. A. Kozyukhin (2017). Polyhedron 137, 122.

    CAS  Google Scholar 

  41. S. A. Adonin, M. I. Rakhmanova, D. G. Samsonenko, M. N. Sokolov, and V. P. Fedin (2016). Inorg. Chim. Acta 450, 232.

    CAS  Google Scholar 

  42. G. Volonakis, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, H. J. Snaith, and F. Giustino (2016). J. Phys. Chem. Lett. 7, 1254.

    CAS  PubMed  Google Scholar 

  43. A. M. Goforth, M. D. Smith, L. Peterson, and H. C. zur Loye Jr. (2004). Inorg. Chem. 43, 7042.

    CAS  PubMed  Google Scholar 

  44. Y. K. Wang, Y. L. Wu, X. Y. Lin, D. H. Wang, W. T. Zhang, K. Y. Song, H. H. Li, and Z. R. Chen (2018). J. Mol. Struct. 1151, 81.

    CAS  Google Scholar 

  45. M. F. Yuste (2002). J. Med. Chem. 45, 5813.

    PubMed  Google Scholar 

  46. C. Hrizi, A. Trigui, Y. Abid, N. Chniba-Boudjada, P. Bordet, and S. Chaabouni (2011). J. Solid State Chem. 184, 3336.

    CAS  Google Scholar 

  47. S. A. Adonina, M. N. Sokolova, and V. P. Fedina (2017). Russ. J. Inorg. Chem. 62, 1789.

    Google Scholar 

  48. S. A. Adonin, M. N. Sokolov, and V. P. Fedin (2015). Coord. Chem. Rev. 312, 1.

    Google Scholar 

  49. A. M. Goforth, M. A. Tershansy, M. D. Smith, L. P. Jr, J. G. Kelley, W. J. I. DeBenedetti, and H. C. zur Loye (2011). J. Am. Chem. Soc. 133, 60.

  50. S. A. Adonin, M. N. Sokolov, P. A. Abramov, S. G. Kozlova, D. P. Pishchur, L. A. Sheludyakova, and V. P. Fedin (2014). Inorg. Chim. Acta 419, 19.

    CAS  Google Scholar 

  51. V. R. Shayapov, A. N. Usoltsev, S. A. Adonin, M. N. Sokolov, D. G. Samsonenko, and V. P. Fedin (2019). New J. Chem. 43, 3927.

    CAS  Google Scholar 

  52. S. Cai, M. S. Wang, P. X. Li, and G. C. Guo (2017). Angew. Chem. Int. Ed. 56, 554.

    Google Scholar 

  53. C. M. I. Okoye (2003). J. Phys. Condens. Matter 15, 5945.

    CAS  Google Scholar 

  54. A. García-Fernández, I. Marcos-Cives, C. Platas-Iglesias, S. Castro-García, D. Vázquez-García, A. Fernández, and M. Sánchez-Andújar (2018). Inorg. Chem. 57, 7655.

    PubMed  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (No: 21771038), the Key Fund for the Higher Education Quality Engineering of Anhui Province (Grant No. 2018jyxm0213) and National Natural Science Foundation of Fujian Province (2018J01684).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Wen Sheng.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10876_2020_1829_MOESM1_ESM.pdf

Supplementary material 1 (PDF 313 kb) Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Center as supplementary publication No.CCDC-1999920, 1010456. Copy of the data can be obtained free of charge at http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Center(CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(0)1223-336033; email:deposit@ccdc.cam.ac.uk)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Sheng, WW., Chen, ZR. et al. Solvent-Mediated 1,ω-Bis(isoquinoline)alkane/Iodobismuthate Hybridized Isomers: Structures and Packing Mode Dependent-Photoluminescence/Thermochromisms. J Clust Sci 32, 727–735 (2021). https://doi.org/10.1007/s10876-020-01829-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01829-0

Keywords

Navigation