Skip to main content

Advertisement

Log in

Protein Leakage Induced Marine Antibiofouling Activity of Biosynthesized Zinc Oxide Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Marine biofouling cause huge economic losses in the aquaculture industries as well as in the marine installation. Biofilm formation is an initial stage of biofouling. Conventional antifoulants including biocides and heavy metal induce toxicity to the aquatic organisms. Marine microorganisms provide a wide range of non-toxic biologically active molecules that helps in synthesis of antimicrobial compounds. The present study was aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using cell free supernatant of Bacillus paramycoides. UV–visible spectrum showed the characteristic surface plasmon resonance absorption band for ZnO NPs at 372 nm. X-ray diffraction shows planes of hexagonal wurtzite structure of ZnO NPs and narrow peaks confirm the crystalline nature of ZnO NPs. Field emission scanning electron microscopic image shows spherical shaped particles in the range of 35–90 nm. Biosynthesized ZnO NPs cause membrane damage in bacterial cells and subsequent protein leakage. ZnO NPs showed remarkable antimicrobial activity against four marine biofilm forming bacteria i.e., Aeromonas hydrophila, Halomonas aquamarina, Escherichia coli and Vibrio parahaemolyticus. Minimum inhibitory concentration value was observed as 10 μg ml−1 with all the bacterial strains. This study also highlights the rapid biosynthesis of ZnO NPs using cell free supernatant of B. paramycoides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Inbakandan, C. Kumar, L. S. Abraham, R. Kirubagaran, R. Venkatesan, and S. A. Khan (2013). Colloids Surf B Biointerfaces 111, 636–643.

    CAS  PubMed  Google Scholar 

  2. N. P. Gule, N. M. Begum, and B. Klumperman (2016). Crit Rev Environ Sci Technol 46, 535–555.

    CAS  Google Scholar 

  3. Y. Xiong and Y. Liu (2010). Appl Microbiol Biotechnol 86, 825–837.

    CAS  PubMed  Google Scholar 

  4. N. P. Gule, M. de Kwaadsteniet, T. E. Cloete, and B. Klumperman (2013). Water Res 47, 1049–1059.

    CAS  PubMed  Google Scholar 

  5. K. Mochida, K. Ito, H. Harino, A. Kakuno, and K. Fujii (2006). Environ Toxicol Chem 25, 3058–3064.

    PubMed  Google Scholar 

  6. M. A. Champ (2003). Mar Pollut Bull 46, 935–940.

    CAS  PubMed  Google Scholar 

  7. R. J. Huggett, M. A. Unger, P. F. Seligman, and A. O. Valkirs (1992). Environ Sci Technol 26, 232–237.

    CAS  Google Scholar 

  8. J. Atalah, G. A. Hopkins, and B. M. Forrest (2013). PLoS One 8, e80365.

    PubMed  PubMed Central  Google Scholar 

  9. J. Atalah, E. M. Newcombe, G. A. Hopkins, and B. M. Forrest (2014). Biofouling 30, 999–1010.

    CAS  PubMed  Google Scholar 

  10. M. Y. Zhang, R. W. Field, and K. S. Zhang (2014). J Membrane Sci 471, 274–284.

    CAS  Google Scholar 

  11. Y. Ma, J. W. Metch, Y. Yang, A. Pruden, and T. Zhang (2016). FEMS Microbiol Ecol 92, fiw002.

    Google Scholar 

  12. H.C. Flemming. Microbial Biofouling: Unsolved Problems, Insufficient Approaches, and Possible Solutions. In: F. HC, W. J, S. U (Eds.), Biofilm Highlights, vol 5, Springer, Berlin, Heidelberg, 2011, pp. 81-109.

  13. K. M. Reddy, K. Feris, J. Bell, D. G. Wingett, C. Hanley, and A. Punnoose (2007). Appl Phys Lett 90, 2139021–2139023.

    CAS  PubMed  Google Scholar 

  14. H. F. Hassan, A. M. Mansour, A. M. Abo-Youssef, B. E. Elsadek, and B. A. Messiha (2017). Clin Exp Pharmacol 44, 235–243.

    CAS  Google Scholar 

  15. P. J. Lu, S. W. Fang, W. L. Cheng, S. C. Huang, M. C. Huang, and H. F. Cheng (2018). J Food Drug Anal 26, 1192–1200.

    CAS  PubMed  Google Scholar 

  16. X. Q. Hou, X. L. Ren, F. Q. Tang, D. Chen, and Z. P. Wang (2006). Chinese J Anal Chem 34, 303–306.

    CAS  Google Scholar 

  17. F. T. Muniz, M. A. Miranda, C. Morilla Dos Santos, and J. M. Sasaki (2016). Acta Crystallogr A Found Adv 72, 385–390.

    CAS  PubMed  Google Scholar 

  18. U. Holzwarth and N. Gibson (2011). Nat Nanotechnol 6, 534.

    CAS  PubMed  Google Scholar 

  19. P. Basnet, T. I. Chanu, D. Samanta, and S. Chatterjee (2018). J Photoch Photobio B 183, 201–221.

    CAS  Google Scholar 

  20. V. N. Kalpana and V. D. Rajeswari (2018). Bioinorg Chem Appl. 2018, 3569758.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, and M. P. Thangaraj (2017). J Photochem Photobiol B 174, 306–314.

    CAS  PubMed  Google Scholar 

  22. B. Balraj, N. Senthilkumar, C. Siva, R. Krithikadevi, A. Julie, I. V. Potheher, and M. Arulmozhi (2017). Res Chem Intermediat 43, 2367–2376.

    CAS  Google Scholar 

  23. E. Selvarajan and V. Mohanasrinivasan (2013). Mater Lett 112, 180–182.

    CAS  Google Scholar 

  24. D. Kundu, C. Hazra, A. Chatterjee, A. Chaudhari, and S. Mishra (2014). J Photoch Photobio B 140, 194–204.

    CAS  Google Scholar 

  25. G. Rajivgandhi, M. Maruthupandy, T. Muneeswaran, M. Anand, and N. Manoharan (2018). Process Biochem 67, 8–18.

    CAS  Google Scholar 

  26. V. V. Kadam, J. P. Ettiyappan, and R. M. Balakrishnan (2019). Mater Sci Eng B-Adv 243, 214–221.

    CAS  Google Scholar 

  27. N. Rajabairavi, C. Raju, C. Karthikeyan, K. Varutharaju, S. Nethaji, A. Hameed, and A. Shajahan Biosynthesis of novel zinc oxide nanoparticles (ZnO NPs) using endophytic bacteria Sphingobacterium thalpophilum. in J. Ebenezar (ed.), Recent trends in materials science and applications, vol. 189 (Springer International Publishing, Switzerland, 2017), pp. 245–254.

    Google Scholar 

  28. S. Rehman, B. R. Jermy, S. Akhtar, J. F. Borgio, S. A. Azeez, V. Ravinayagam, R. Alindan, Z. H. Al Asalem, A. Buhameid, and A. Gani (2019). Artif. Cell Nanomed. B 47, 2072–2082.

    CAS  Google Scholar 

  29. P. Eaton, P. Quaresma, C. Soares, C. Neves, M. P. de Almeida, E. Pereira, and P. West (2017). Ultramicroscopy 182, 179–190.

    CAS  PubMed  Google Scholar 

  30. M. Abinaya, B. Vaseeharan, M. Divya, A. Sharmili, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2018). J Trace Elem Med Bio 45, 93–103.

    CAS  Google Scholar 

  31. A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad (2015). Nanomicro Lett 7, 219–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. N. Jones, B. Ray, K. T. Ranjit, and A. C. Manna (2008). FEMS Microbiol Lett 279, 71–76.

    CAS  PubMed  Google Scholar 

  33. O. Yamamoto (2001). International Journal of Inorganic Materials 3, 643–646.

    CAS  Google Scholar 

  34. K. Nithya and S. Kalyanasundharam (2019). OpenNano 4, 100024.

    Google Scholar 

  35. C. Hanley, J. Layne, A. Punnoose, K. M. Reddy, I. Coombs, A. Coombs, K. Feris, and D. Wingett (2008). Nanotechnology 19, 295103.

    PubMed  PubMed Central  Google Scholar 

  36. A. S. H. Hameed, C. Karthikeyan, A. P. Ahamed, N. Thajuddin, N. S. Alharbi, S. A. Alharbi, and G. Ravi (2016). Sci Rep 6, 24312.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M. F. Benedetti, and F. Fievet (2006). Nano Lett 6, 866–870.

    CAS  PubMed  Google Scholar 

  38. Z. B. Huang, X. Zheng, D. H. Yan, G. F. Yin, X. M. Liao, Y. Q. Kang, Y. D. Yao, D. Huang, and B. Q. Hao (2008). Langmuir 24, 4140–4144.

    CAS  PubMed  Google Scholar 

  39. R. Pati, R. K. Mehta, S. Mohanty, A. Padhi, M. Sengupta, B. Vaseeharan, C. Goswami, and A. Sonawane (2014). Nanomedicine 10, 1195–1208.

    CAS  PubMed  Google Scholar 

  40. J. Sawai (2003). J Microbiol Meth 54, 177–182.

    CAS  Google Scholar 

  41. P. Bhattacharyya, B. Agarwal, M. Goswami, D. Maiti, S. Baruah, and P. Tribedi (2018). Antonie van Leeuwenhoek 111, 89–99.

    CAS  PubMed  Google Scholar 

  42. A. Iswarya, B. Vaseeharan, M. Anjugam, B. Ashokkumar, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). Colloids Surf B Biointerfaces 158, 257–269.

    CAS  PubMed  Google Scholar 

  43. M. A. Champ (2000). Sci Total Environ 258, 21–71.

    CAS  PubMed  Google Scholar 

  44. J. E. Eckman, D. Thistle, W. C. Burnett, G. L. J. Paterson, C. Y. Robertson, and P. J. D. Lambshead (2001). J Mar Res 59, 79–95.

    Google Scholar 

  45. I. Amara, W. Miled, R. Slama, and N. Ladhari (2018). Environ Toxicol Phar 57, 115–130.

    CAS  Google Scholar 

  46. T. Marudhupandi, T. T. A. Kumar, S. Prakash, J. Balamurugan, and N. B. Dhayanithi (2017). Aquacult Rep 8, 39–44.

    Google Scholar 

Download references

Acknowledgement

The authors are thankful for the RUSA Scheme Phase 2.0 grant [F-24-51/2014–U, Policy (TNMulti-Gen), Department of Education, Govt. of India. Dt.09.10.2018]. Authors thank the authorities of Alagappa University, Karaikudi and Head, Department of Animal Health and Management for their kind encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannapiran Ethiraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1. Figure 1. DLS analysis of ZnO NPs. (TIFF 432 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharmaraj, D., Krishnamoorthy, M., Rajendran, K. et al. Protein Leakage Induced Marine Antibiofouling Activity of Biosynthesized Zinc Oxide Nanoparticles. J Clust Sci 32, 643–650 (2021). https://doi.org/10.1007/s10876-020-01827-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01827-2

Keywords

Navigation