Skip to main content
Log in

Beneficial effects of biodelivery of brain-derived neurotrophic factor and gold nanoparticles from functionalized electrospun PLGA scaffold for nerve tissue engineering

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Despite of the pivotal role of Schwann cells (SCs) in peripheral nerve regeneration, lack of an available source has prompted researches for Schwann-like cells transdifferentiation. This study suggests an effective method for tuning the surface of aligned poly (lactic-co-glycolic acid) (PLGA) nanofibers to enhance attachment and proliferation of h-ADSCs on the scaffold through coating of laminin. Following the characterization of biofunctionalized PLGA, brain-derived neurotropic factor (BDNF) and gold nanoparticles (AuNPs) were encapsulated in chitosan nanoparticles (CSNPs), added into laminin solution, and coated on the surface of aligned PLGA scaffold. The release behavior of BDNF and AuNPs from scaffold was evaluated by Bradford assay and inductive coupled plasma optical emission spectrometry (ICP-OES) technique, respectively. Afterwards, experimental groups were investigated for potential of Schwann cell differentiation using immunocytochemical staining and real-time RT-PCR technique. Results of MTT assay showed the significantly higher proliferation of h-ADSCs on laminin-functionalized scaffold compared to PLGA scaffold (p  <  0.05). Additionally, the presence of BDNF and AuNPs on scaffold significantly improved the expression of SCs markers as compared to the control group (p < 0.05). Therefore, use of biofunctionalized PLGA nanofibers can be a promising strategy for inducing the differentiation of h-ADSCs into SCs for nerve tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Arslantunali, T. Dursun, D. Yucel, N. Hasirci, and V. Hasirci (2014). Med. Devices (Auckl). 7, 405.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. B. J. Pfister, T. Gordon, J. R. Loverde, A. S. Kochar, S. E. Mackinnon, and D. K. Cullen (2011). Crit. Rev. Biomed. Eng. 39, 2.

    Google Scholar 

  3. A. F. Svennigsen and L. B. Dahlin (2013). Brain Sci. 3, 3.

    Google Scholar 

  4. K. M. Chan, T. Gordon, D. W. Zochodne, and H. A. Power (2014). Exp. Neurol. 261, 82.

    Google Scholar 

  5. A. Faroni, S. A. Mobasseri, P. J. Kingham, and A. J. Reid (2015). Adv. Drug Deliv. Rev. 82–83, 160–167.

    PubMed  Google Scholar 

  6. T. Tamaki (2014). Neural Regen. Res. 9, 14.

    Google Scholar 

  7. B. Battiston, I. Papalia, P. Tos, and S. Geuna (2009). Int. Rev. Neurobiol 87, 1.

    PubMed  Google Scholar 

  8. P. Sensharma, G. Madhumathi, R. D. Jayant, and A. K. Jaiswal (2017). Mater. Sci. Eng. C. 77, 13.

    Google Scholar 

  9. H. S. Kim, J. Lee, D. Y. Lee, Y. D. Kim, J. Y. Kim, H. J. Lim, S. Lim, and Y. S. Cho (2017). Stem Cell Rep. 8, 6.

    Google Scholar 

  10. F. M. Chen, L. A. Wu, M. Zhang, R. Zhang, and H. H. Sun (2011). Biomaterials 32, 12.

  11. P. A. Zuk, M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim, and M. H. Hedrick (2002). Mol. Biol. Cell. 13, 12.

  12. W. Liu and Y. L. Cao (2007). Biomaterials 28, 34.

    Google Scholar 

  13. P. X. Ma (2008). Adv. Drug Deliv. Rev. 60, 2.

    Google Scholar 

  14. J. L. Wu and Y. Hong (2016). Bioactive Mater. 1, 1.

    Google Scholar 

  15. J. Ai, A. Kiasat-Dolatabadi, S. Ebrahimi-Barough, A. Ai, N. Lotfibakhshaiesh, A. Norouzi-Javidan, H. Saberi, B. Arjmand, and H. R. Aghayan (2014). Neuroscience 1, 1.

    Google Scholar 

  16. L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani, and S. Ramakrishna (2010). Mater. Sci. Eng. C. 30, 8.

    Google Scholar 

  17. Z. Meng, Q. Zeng, Z. Sun, X. Xu, Y. Wang, W. Zheng, and Y. Zheng (2012). Colloids Surf. B Biointerfaces. 94, 1.

    Google Scholar 

  18. G. Chen, Y. Xia, X. L. Lu, X. F. Zhou, F. M. Zhang, and N. Gu (2013). J. Biomed. Mater. Res. 101, 1.

    Google Scholar 

  19. W. M. Yu, Z. L. Chen, A. J. North, and S. Strickland (2009). J. Cell Sci. 122, 7.

    Google Scholar 

  20. A. Bajek, D. Porowińska, and K. Roszkowski (2017). Eur. J. Biol. Res. 7, 3.

    Google Scholar 

  21. J. Y. Zhang, X. G. Luo, C. J. Xian, Z. H. Liu, and X. F. Zhou (2000). Eur. J. Neurosci. 12, 12.

    Google Scholar 

  22. A. W. English, W. Meador, and D. Carrasco (2005). Eur J Neurosci. 21, 10.

    Google Scholar 

  23. D. Nevozhay, U. Kańska, R. Budzyńska, and J. Boratyński (2007). Postep. Hig. Med. Dosw.. 61, 1.

  24. A. Bernkop-Schnürch, and S. Dünnhaupt (2012). Eur. J. Pharm. Biopharm. 81, 3.

  25. K. Baranes, M. Shevach, O. Shefi, and T. Dvir (2015). Nano lett. 16, 5.

    Google Scholar 

  26. S. Vaezifar, S. Razavi, M. A. Golozar, H. Z. Esfahani, M. Morshed, and S. Karbasi (2015). Int. J. Polym. Mater. Po. 64, 2.

    Google Scholar 

  27. T. Wu, D. Li, Y. Wang, B. Sun, D. Li, Y. Morsi, H. El-Hamshary, S. S. Al-Deyab, and X. Mo (2017). J. Mater. Chem. B. 5, 1.

    Google Scholar 

  28. S. Razavi, M. Mardani, M. Kazemi, E. Esfandiari, M. Narimani, A. Esmaeili, and N. Ahmadi (2013). J. Cell Mol. Neurobiol. 33, 2.

    Google Scholar 

  29. S. Razavi, S. Karbasi, M. Morshed, H. Zarkesh Esfahani, M. Golozar, and S. Vaezifar (2015). Cell J. 17, 1.

    Google Scholar 

  30. A. Abdal-Hay, A. Memic, K. H. Hussein, Y. S. Oh, M. Fouad, F. F. Al-Jassir, H. M. Woo, Y. Morsi, X. M. Mo, and S. Ivanovski (2017). Eur. Polym. 96, 6.

  31. E. N. Koukaras, S. A. Papadimitriou, D. Bikiaris, and G. E. Froudakis (2012). Mol. Pharm. 9, 10.

    Google Scholar 

  32. I. Khalin and R. Alyautdin (2016). Drug Deliv. 23, 9.

    Google Scholar 

  33. Y. L. Lin, J. C. Jen, S. Hsu, and I. M. Chiu (2008). Surg. Neurol. 70, 1.

  34. L. Rou (2012). Polytech Univ Turin. 1, 25.

    Google Scholar 

  35. Y. Yang, C. L. Long, H. Pul, Q. Wang, and Z. Yang (2016). Sci. Total Environ. 563, 1.

    Google Scholar 

  36. G. Zarinfard, M. Tadjalli, S. Razavi, and M. Kazemi (2016). J. Mol. Neurosci. 60, 4.

    Google Scholar 

  37. X. J. Wen and P. A. Tresco (2006). Biomaterials. 27, 20.

    Google Scholar 

  38. V. Chiono and C. Tonda-Turo (2015). Prog. Neurobiol. 131, 87.

    PubMed  Google Scholar 

  39. R. Valentini, P. Aebischer, S. Winn, and P. Galletti (1987). Exp. Neurol. 98, 2.

    Google Scholar 

  40. D. J. Bryan, A. H. Holway, K. K. Wang, A. E. Silva, D. J. Trantolo, D. Wise, and I. C. Summerhayes (2000). Tissue Eng. 6, 2.

    Google Scholar 

  41. G. Keilhoff, A. Goihl, F. Stang, G. Wolf, and H. Fansa (2006). Tissue Eng. 12, 6.

    Google Scholar 

  42. C. Zhao, A. Tan, G. Pastorin, and H. K. Ho (2013). Biotechnol. Adv. 31, 5.

    Google Scholar 

  43. N. J. Schaub (2016). Neural Regen. Res. 11, 12.

    Google Scholar 

  44. J. M. Corey, D. Y. Lin, K. B. Mycek, Q. Chen, S. Samuel, E. L. Feldman, and D. C. Martin (2007). J. Biomed. Mater. Res. A. 83, 3.

    Google Scholar 

  45. F. Yang, R. Murugan, S. Wang, and S. Ramakrishna (2005). Biomaterials. 26, 15.

    Google Scholar 

  46. M. Laura, N. D. Leipzig, and M. S. Shoichet (2008). Mater. Today. 11, 5.

    Google Scholar 

  47. N. E. Zander, J. A. Orlicki, A. M. Rawlett, and T. P. Beebe (2010). Biointerphases. 5, 4.

    Google Scholar 

  48. C. E. Dumont and W. Born (2005). J. Biomed. Mater. Res. B. 73, 1.

    Google Scholar 

  49. R. Seyedebrahimi, S. Razavi, and J. Varshosaz (2019). J. Clust. Sci. 31, 1.

    Google Scholar 

  50. S. Razavi, R. Seyedebrahimi, and M. Jahromi (2019). Biochem. Biophys. Res. Commun. 513, 3.

    Google Scholar 

  51. S. Gurunathan and J. H. Kim (2018). Nanomaterials 8, 6.

    Google Scholar 

  52. S. Das, M. Sharma, D. Saharia, K. K. Sarma, M. G. Sarma, B. B. Borthakur, and U. Bora (2015). Biomaterials. 62, 66–75.

    CAS  PubMed  Google Scholar 

  53. P. G. di Summa, D. F. Kalbermatten, W. Raffoul, G. Terenghi, and P. J. Kingham (2012). Tissue Eng. Part A. 19, 3–4.

    Google Scholar 

  54. A. Faroni, R. J. Smith, L. Lu, and A. J. Reid (2016). Eur. J. Neurosci. 43, 3.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Isfahan University of Medical Sciences for their financial support (Grant no.196052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahnaz Razavi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10876_2020_1822_MOESM1_ESM.docx

Supplementary material 1 (DOCX 341 kb) Agarose gel electrophoresis image showing PCR product of DNA ladder, 100bp (1), CNTF (2), MBP (3), S100 β (4), NGF (5), GDNF (6), BDNF (7), GFAP (8) genes in PLGB group.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyedebrahimi, R., Razavi, S., Varshosaz, J. et al. Beneficial effects of biodelivery of brain-derived neurotrophic factor and gold nanoparticles from functionalized electrospun PLGA scaffold for nerve tissue engineering. J Clust Sci 32, 631–642 (2021). https://doi.org/10.1007/s10876-020-01822-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01822-7

Keywords

Navigation