Skip to main content
Log in

M-type Barium Hexaferrite Nanoparticles Synthesized by γ-Ray Irradiation Assisted Polyacrylamide Gel Method and Its Optical, Magnetic and Supercapacitive Performances

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Barium hexaferrites (BaFe12O19) nanoparticles are prepared using γ-ray irradiation assisted polyacrylamide gel method (RIAPGM). The experiment parameters of as-prepared samples are investigated in detail, such as polymerization initiation mode and annealing temperature. The thermal decomposition behavior of BaFe12O19 xerogels were measured by thermogravimetric and differential scanning calorimetry (TG–DSC). The structure, optical, magnetic and electrochemical properties of BaFe12O19 nanoparticles were examined by various characterization techniques. The optical and magnetic properties of BaFe12O19 nanoparticles are emphatically researched by changing the annealing temperature. The BaFe12O19 nanoparticles prepared by RIAPGM exhibits uniform particle size distribution, excellent magnetic and electrochemical properties due to the effect of facet-dependent behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. H. Makled and E. Sheha (2019). J. Electron. Mater. 48, 1612–1616.

    CAS  Google Scholar 

  2. G. Feng, W. Zhou, H. Deng, et al. (2019). Ceram. Int. 45, 13859–13864.

    CAS  Google Scholar 

  3. M. A. Almessiere, Y. Slimani, H. Güngüneş, et al. (2019). Ceram. Int. 45, 10048–10055.

    CAS  Google Scholar 

  4. D. Lisjak and M. Drofenik (2006). J. Eur. Ceram. Soc. 26, 3681–3686.

    CAS  Google Scholar 

  5. D. Min (2020). J. Electron. Mater. 49, 819–825.

    CAS  Google Scholar 

  6. L. P. Bicelli, S. Maffi, F. Leccabue, et al. (1991). J. Magn. Magn. Mater. 94, 267–277.

    CAS  Google Scholar 

  7. Y. Zhao, Y. Huang, Q. Wang, et al. (2013). J. Sol-gel Sci. Technol. 66, 238–241.

    CAS  Google Scholar 

  8. M. Zhang, J. Dai, Q. Liu, et al. (2018). Curr. Appl. Phys. 18, 1426–1430.

    Google Scholar 

  9. R. A. Azis, N. Che Muda, J. Hassan, et al. (2018). Materials 11, 2190.

    PubMed Central  Google Scholar 

  10. S. L. Hu, J. Liu, H. Y. Yu, et al. (2019). J. Magn. Magn. Mater. 473, 79–84.

    CAS  Google Scholar 

  11. V. A. Zhuravlev, V. I. Itin, R. V. Minin, et al. (2019). J. Alloy Compd. 771, 686–698.

    CAS  Google Scholar 

  12. P. Sharma, R. A. Rocha, S. N. De Medeiros, et al. (2007). J. Alloy Compd. 443, 37–42.

    CAS  Google Scholar 

  13. U. Topal, H. Ozkan, and L. Dorosinskii (2007). J. Alloy Compd. 428, 17–21.

    CAS  Google Scholar 

  14. H. K. Choudhary, R. Kumar, A. V. Anupama, et al. (2018). Ceram. Int. 44, 8877–8889.

    CAS  Google Scholar 

  15. S. Wang, D. Li, Y. Xiao, et al. (2017). Russ. J. Phys. Chem. A 91, 1981–1986.

    CAS  Google Scholar 

  16. S. F. Wang, C. Zhang, G. Sun, et al. (2015). J. Sol-Gel Sci. Technol. 73, 371–378.

    CAS  Google Scholar 

  17. S. F. Wang, H. B. Lv, X. S. Zhou, et al. (2014). Nanosci. Nanotechnol. Lett. 6, 758–771.

    CAS  Google Scholar 

  18. A. Sin and P. Odier (2000). Adv. Mater. 12, 649–652.

    CAS  Google Scholar 

  19. H. Gao, H. Yang, S. Wang, et al. (2018). J. Sol-Gel Sci. Technol. 86, 206–216.

    CAS  Google Scholar 

  20. H. Gao, H. Yang, S. Wang, et al. (2018). Ceram. Int. 44, 14754–14766.

    CAS  Google Scholar 

  21. S. Wang, H. Gao, C. Chen, et al. (2019). J. Mater. Sci.-Mater. El. 30, 15744–15753.

    CAS  Google Scholar 

  22. S. Wang, C. Chen, Y. Li, et al. (2019). J. Electron. Mater. 48, 6675–6685.

    CAS  Google Scholar 

  23. S. Wang, H. Gao, Y. Wei, et al. (2019). CrystEngComm 21, 263–277.

    CAS  Google Scholar 

  24. S. F. Wang, C. Zhang, G. Sun, et al. (2013). Opt. Mater. 36, 482–488.

    CAS  Google Scholar 

  25. Y. Zhang, C. Y. Zhao, H. Liang, et al. (2009). Catal. Lett. 127, 339–347.

    CAS  Google Scholar 

  26. Y. Zhang, H. Liang, C. Y. Zhao, et al. (2009). J. Mater. Sci. 44, 931–938.

    CAS  Google Scholar 

  27. T. Xian, H. Yang, X. Shen, et al. (2009). J. Alloy Compd. 480, 889–892.

    CAS  Google Scholar 

  28. S. Q. Wu, Y. Y. Liu, L. N. He, et al. (2004). Mater. Lett. 58, 2772–2775.

    CAS  Google Scholar 

  29. S. Verma, O. P. Pandey, A. Paesano Jr., et al. (2014). Physica B 448, 57–59.

    CAS  Google Scholar 

  30. E. Pollert (1985). Prog. Cryst. Growth Charact. 11, 155–205.

    CAS  Google Scholar 

  31. C. M. Fang, F. Kools, R. Metselaar, et al. (2003). J. Phys.-Condens. Matter 15, 6229.

    CAS  Google Scholar 

  32. M. Okube, J. Yoshizaki, T. Toyoda, et al. (2016). J. Appl. Crystallogr. 49, 1433–1442.

    CAS  Google Scholar 

  33. J. R. Carjaval FULLPROF program. Rietveld pattern matching analysis of powder patterns (ILL, Grenoble, 1990).

    Google Scholar 

  34. H. Wang, Y. Xu, L. Jing, et al. (2017). J. Alloy Compd. 710, 510–518.

    CAS  Google Scholar 

  35. S. Wang, H. Gao, Y. Wang, et al. (2020). J. Electron. Mater. 49, 2450–2462.

    CAS  Google Scholar 

  36. D. Li, J. Gao, P. Cheng, et al. (2020). Adv. Funct. Mater. 30, 1904349.

    CAS  Google Scholar 

  37. F. Qin, X. Chen, Z. Yi, et al. (2020). Sol Energy Mater. Sol C 211, 110535.

    CAS  Google Scholar 

  38. H. Huan, H. Jile, Y. Tang, et al. (2020). Micromachines 11, 309.

    PubMed Central  Google Scholar 

  39. H. Gao, H. Yang, and S. Wang (2018). Trans. Indian Ceram. Soc. 77, 150–160.

    CAS  Google Scholar 

  40. M. A. Almessiere, Y. Slimani, N. A. Tashkandi, et al. (2019). Ceram. Int. 45, 1691–1697.

    CAS  Google Scholar 

  41. Y. Slimani, H. Güngüneş, M. Nawaz, et al. (2018). Ceram. Int. 44, 14242–14250.

    CAS  Google Scholar 

  42. V. Manikandan, A. Vanitha, E. Ranjith Kumar, et al. (2017). J. Magn. Magn. Mater. 426, 11–17.

    CAS  Google Scholar 

  43. Z. Yi, Y. Zeng, and H. Wu (2019). Results Phys. 15, 102609.

    Google Scholar 

  44. B. Ensign, R. Choudhary, H. Ucar, et al. (2020). J. Magn. Magn. Mater. 509, 166882.

    CAS  Google Scholar 

  45. O. Dehghani Dastjerdi, H. Shokrollahi, and H. Yang (2020). Ceram. Int. 46, 2709–2723.

    CAS  Google Scholar 

  46. P. L. Hsieh, G. Naresh, Y. S. Huang, et al. (2019). J. Phys. Chem. C 123, 13664–13671.

    CAS  Google Scholar 

  47. G. S. Kumar, S. A. Reddy, H. Maseed, et al. (2020). Funct. Mater. Lett. 13, 2051005.

    CAS  Google Scholar 

  48. Y. Yan, H. Yang, Z. Yi, et al. (2019). Desalin Water Treat. 170, 349–360.

    CAS  Google Scholar 

  49. Y. Yan, H. Yang, Z. Yi, et al. (2020). Solid State Sci. 100, 106102.

    CAS  Google Scholar 

  50. J. Lin, R. Zong, M. Zhou, et al. (2009). Appl. Catal. B Environ. 89, 425–431.

    CAS  Google Scholar 

  51. Y. Wang, F. Jiang, J. Chen, et al. (2020). Nanomaterials 10, 178.

    PubMed Central  Google Scholar 

  52. S. Zhu, T. Xu, H. Fu, et al. (2007). Environ. Sci. Technol. 41, 6234–6239.

    CAS  PubMed  Google Scholar 

  53. Z. Yi, X. Li, H. Wu, et al. (2019). Nanomaterials 9, 1254.

    CAS  PubMed Central  Google Scholar 

  54. C. Zheng, H. Yang, Z. Cui, et al. (2017). Nanoscale Res. Lett. 12, 608.

    PubMed  PubMed Central  Google Scholar 

  55. Y. X. Yan, H. Yang, Z. Yi, et al. (2019). Environ. Sci. Pollut. R 26, 29020–29031.

    CAS  Google Scholar 

  56. C. Cai, S. B. Han, W. Liu, et al. (2020). Appl. Catal. B Environ. 260, 118103.

    CAS  Google Scholar 

  57. S. Shahabuddin, A. Numan, M. M. Shahid, et al. (2019). Ceram. Int. 45, 11428–11437.

    CAS  Google Scholar 

  58. H. Wu, H. Jile, Z. Chen, et al. (2020). Micromachines 11, 189.

    PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Project 2019DB02 supported by NPL, CAEP, the Talent Introduction Project (09924601), Major Cultivation Projects (18ZDPY01) and Research Project of Higher Education Teaching Reform (JGZC1903) of Chongqing Three Gorges University, the Chongqing Natural Science Foundation (cstc2019jcyj-msxmX0310, cstc2018jcyjAX0599) and the Science and Technology Research Program of Chongqing Education Commission of China (KJQN201901, KJZD-M201901201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shifa Wang or Huajing Gao.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Gao, H., Sun, G. et al. M-type Barium Hexaferrite Nanoparticles Synthesized by γ-Ray Irradiation Assisted Polyacrylamide Gel Method and Its Optical, Magnetic and Supercapacitive Performances. J Clust Sci 32, 569–578 (2021). https://doi.org/10.1007/s10876-020-01815-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01815-6

Keywords

Navigation