Skip to main content
Log in

Two Types of {FeDy} Heterometallic Complexes Containing Fe4 Structure: Carboxylate Derivatives Effect on the Structures and Magnetic Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We successfully obtained two type of heterometallic complexes [Fe4Dy2(L1)2(µ4-O)2(piv)4(H2O)2(NO3)4]·CH3CN·CH3OH (1) and [Fe6Dy2(L1)2(µ4-O)2(CH3COO)6(OH)2(H2O)2(NO3)6]·CH3CN (2) by using 2,2′-((2-((2-hydroxyethyl)amino)cyclohexyl)azanediyl)bis(ethan-1-ol) (H3L1), Dy(NO3)3·6H2O, FeCl3 and pivalic acid (piv) or acetic acid under room temperature in different solvent. Crystal structure showed that the central structure of [\({{\text{Fe}}}_{4}^{{\text{III}}}\)(µ4-O)2]8+ arranged in what was often termed an absent cubic shape, although here the Fe centers were strictly coplanar. Each Fe3 triangle was connected to the capping Dy(III) through µ4-O bridges for complex 1, and each Fe3 triangle was connected to the capping Fe(III) through µ4-O bridges for complex 2. It might be due to the steric effect that the coordination atoms of piv ligands chelated and blocked the structure. AC magnetic susceptibilities exhibited that complex 1 and 2 showed out-of-phase (χ″) component of ac-susceptibilities at zero Oe static magnetic field over the frequency range of 9–999 Hz, which energy barriers were 0.44 and 0.13 K. And their energy barriers were 1.2 and 12.2 K at applied 1000 Oe static magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. F. Albiol, T. A. O’Brien, W. Wernsdorfer, B. Moulton, M. J. Zaworotko, K. A. Abboud, and G. Christou (2005). Angew. Chem. Int. Ed. 44, 897.

    Article  Google Scholar 

  2. L. M. Wittick, L. F. Jones, P. Jensen, B. Moubaraki, L. Spiccia, K. J. Berry, and K. S. Murray (2006). Dalton Trans. 12, 1534.

    Article  Google Scholar 

  3. V. G. Makhankova, O. Y. Vassilyeva, V. N. Kokozay, J. Reedijk, G. A. van Albada, J. Jezierska, and B. W. Skelton (2002). Eur. J. Inorg. Chem 2002, 2163.

    Article  Google Scholar 

  4. E. A. Buvaylo, V. N. Kokozay, O Yu Vassilyeva, B. W. Skelton, I. L. Eremenko, J. Jezierska, and A. Ozarowski (2009). Inorg. Chem. 48, 11092.

    Article  CAS  Google Scholar 

  5. R. W. Saalfrank, R. Prakash, H. Maid, F. Hampel, F. W. Heinemann, A. X. Trautwein, and L. H. Böttger (2006). Chem. Eur. J. 12, 2428.

    Article  CAS  Google Scholar 

  6. A. Scheurer, K. Gieb, M. S. Alam, F. W. Heinemann, R. W. Saalfrank, W. Kroener, K. Petukhov, M. Stocker, and P. Müller (2012). Dalton Trans. 41, 3553.

    Article  CAS  Google Scholar 

  7. R. W. Saalfrank, C. Deutscher, H. Maid, A. M. Ako, S. Sperner, T. Nakajima, W. Bauer, F. Hampel, B. A. Hess, N. J. R. Van, R. Eikema Hommes, R. Puchta, and F. W. Heinemann (2004). Chem. Eur. J. 10, 1899.

    Article  CAS  Google Scholar 

  8. R. W. Saalfrank, C. Deutscher, S. Sperner, T. Nakajima, A. M. Ako, E. Uller, F. Hampel, and F. W. Heinemann (2004). Inorg. Chem. 43, 4372.

    Article  CAS  Google Scholar 

  9. J. C. Ang, Y. Mulyana, C. Ritchie, R. Clerac, and C. Boskovic (2009). Aust. J. Chem. 62, 1124.

    Article  CAS  Google Scholar 

  10. E. M. Rumberger, S. J. Shah, C. C. Beedle, L. N. Zakharov, A. L. Rheingold, and D. N. Hendrickson (2005). Inorg. Chem. 44, 2742.

    Article  CAS  Google Scholar 

  11. F.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, and R. A. Layfield (2018). Science 362, 1400.

    Article  CAS  Google Scholar 

  12. C. A. P. Goodwin, F. Ortu, D. Reta, N. F. Chilton, and D. P. Mills (2017). Nature 548, 439.

    Article  CAS  Google Scholar 

  13. L. Ungur, S.-Y. Lin, J. Tang, and L. F. Chibotaru (2014). Chem. Soc. Rev. 43, 6894.

    Article  CAS  Google Scholar 

  14. J.-L. Liu, Y.-C. Chen, and M.-L. Tong (2018). Chem. Soc. Rev. 47, 2431.

    Article  CAS  Google Scholar 

  15. K. Liu, W. Shi, and P. Cheng (2015). Coordin. Chem. Rev. 289–290, 74.

    Article  Google Scholar 

  16. J.-L. Liu, W.-Q. Lin, Y.-C. Chen, J.-D. Leng, F.-S. Guo, and M.-L. Tong (2012). Inorg. Chem. 52, 457.

    Article  Google Scholar 

  17. H. L. C. Feltham, R. Clérac, L. Ungur, L. F. Chibotaru, A. K. Powell, and S. Brooker (2013). Inorg. Chem. 52, 3236.

    Article  CAS  Google Scholar 

  18. R. Sessoli and A. K. Powell (2009). Coord. Chem. Rev. 253, 2328.

    Article  CAS  Google Scholar 

  19. S. Osa, T. Kido, N. Matsumoto, N. Re, A. Pochaba, and J. Mrozinski (2004). J. Am. Chem. Soc. 126, 420.

    Article  CAS  Google Scholar 

  20. N. F. Chilton, S. K. Langley, B. Moubaraki, and K. S. Murray (2010). Chem. Commun. 46, 7787.

    Article  CAS  Google Scholar 

  21. V. Mereacre, D. Prodius, Y. Lan, C. Turta, C. E. Anson, and A. K. Powell (2011). Chem. Eur. J. 17, 123.

    Article  CAS  Google Scholar 

  22. M. N. Akhtar, V. Mereacre, G. Novitchi, J.-P. Tuchagues, Christopher E. Anson, and A. K. Powell (2009). Chem. Eur. J. 15, 7278.

    Article  CAS  Google Scholar 

  23. C. Benelli and D. Gatteschi (2002). Chem. Rev. 102, 2369.

    Article  CAS  Google Scholar 

  24. D. Gatteschi, R. Sessoli, and J. Villain Molecular Nanomagnets (Oxford University Press, Oxford, 2006).

    Book  Google Scholar 

  25. G. M. Sheldrick (2015). Acta Crystallogr. Sect. C Struct. Chem. 71, 3.

    Article  Google Scholar 

  26. Y. Yan, Y. Hu, G. P. Zhao, and X. M. Kou (2008). Dyes. Pigm. 79, 210.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Special Fund for Outstanding Youth Cultivation of Henan Academy of Sciences (No. 190403004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yang.

Ethics declarations

Conflict of interests

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1453 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, FW., Chen, HT., Li, DJ. et al. Two Types of {FeDy} Heterometallic Complexes Containing Fe4 Structure: Carboxylate Derivatives Effect on the Structures and Magnetic Properties. J Clust Sci 32, 461–467 (2021). https://doi.org/10.1007/s10876-020-01804-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01804-9

Keywords

Navigation