Abstract
In this work, we perform detailed density functional theory (DFT) calculations to systematically study the composition-dependent structural, thermodynamic and electronic properties of Mg–Al alloy clusters with 55 atoms. It is found that the Al-rich clusters, such as Mg12Al43 and Mg12Al43− generally possess higher thermodynamic stability and exhibit distinctive electronic properties. Especially for Mg12Al43−, there is relatively large gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), suggesting that the Mg12Al43− may possess higher resistance to the reactivity with oxygen. In addition, we also study single O atom and 3O2 adsorption on the Al55, Mg55, Mg12Al43 and Mg12Al43− clusters. Through comparing their adsorption energies, we find that the H1 sites (on the hollow site of one triangular facet among two edge and one vertex atoms) energetically are the most stable O adsorption site for all clusters. Most importantly, for 3O2 adsorbed on Mg12Al43 and Mg12Al43− clusters, replacing the Al atoms of Al55 cluster with Mg atoms can effectively weaken the adsorption of oxygen and enhance the resistance to oxidation.
Similar content being viewed by others
References
R. E. Leuchtner, A. C. Harms, and A. W. Castleman (1989). J. Chem. Phys. 91, 2753.
H. Wang, Y. J. Ko, X. Zhang, G. Gantefoer, H. Schnoeckel, B. W. Eichhorn, P. Jena, B. Kiran, A. K. Kandalam, and K. H. Bowen, Jr. (2014). J. Chem. Phys. 140, 124309.
H. Yang and H. Chen (2017). Eur. Phys. J. D 71, 191.
B. J. Lu, X. T. Li, Y. J. Zhao, Z. Y. Wang, and X. B. Yang (2017). AIP Advances. 7, 095023.
X. Xing, J. Wang, X. Kuang, X. Xia, C. Lu, and G. Maroulis (2016). Phys. Chem. Chem. Phys. 18, 26177.
J. Wang, N. Du, and H. Chen (2018). Comput. Theor. Chem. 1128, 15.
C. J. Grover, A. C. Reber, and S. N. Khanna (2017). J. Chem. Phys. 146, 224301.
S. Yin, R. Moro, X. Xu, and W. A. de Heer (2007). Phys. Rev. Lett. 98, 113401.
T. Sondón, J. Guevara, and A. Saúl (2007). Phys. Rev. B 75, 104426.
D. Zitoun, M. Respaud, M. C. Fromen, M. J. Casanove, P. Lecante, C. Amiens, and B. Chaudret (2002). Phys. Rev. Lett. 89, 037203.
J. Zhao, X. Huang, P. Jin, and Z. Chen (2015). Coord. Chem. Rev. 289, 315.
Y. Sun, B. Wiley, Z. Y. Li, and Y. Xia (2004). J. Am. Chem. Soc. 126, 9399.
M. Broyer, E. Cottancin, J. Lermé, M. Pellarin, N. Del Fatti, F. Vallée, J. Burgin, C. Guillon, and P. Langot (2008). Faraday Discuss. 138, 137.
K. W. Park, D. S. Han, and Y. E. Sung (2006). J. Power Sources 163, 82.
R. Zhao, Y. Liu, C. Liu, G. Xu, Y. Chen, Y. Tang, and T. Lu (2014). J. Mater. Chem. A 2, 20855.
Y. Chen, Z. Liang, F. Yang, Y. Liu, S. Chen, and J. Phys (2011). Chem. C 115, 24073.
S. S. Gupta and J. Datta (2006). J. Electroanal. Chem. 594, 65.
G. Wang, H. Wu, D. Wexler, H. Liu, and O. Savadogo (2010). J. Alloys Compd. 503, 1.
N. T. Khi, J. Yoon, H. Kim, S. Lee, B. Kim, H. Baik, S. J. Kwon, and K. Lee (2013). Nanoscale 5, 5738.
S. Alayoglu and B. Eichhorn (2008). J. Am. Chem. Soc. 130, 17479.
X. Liu, D. Tian, and C. Meng (2013). Chem. Phys. 415, 179.
R. A. Guirado-López and F. Aguilera-Granja (2008). J. Phys. Chem. C 112, 6729.
G. Ramos-Sanchez, S. Praserthdam, F. Godinez-Salomon, C. Barker, M. Moerbe, H. A. Calderon, L. A. Lartundo, M. A. Leyva, O. Solorza-Feriac, and P. B. Balbuena (2015). Phys. Chem. Chem. Phys. 17, 28286.
A. I. Taub, P. E. Krajewski, A. A. Luo, and J. N. Owens (2007). J. Metals 59, 48.
M. Paramsothy, N. Srikanth, and M. Gupta (2008). J. Alloys Compd. 461, 200.
T. Takenaka, T. Ono, Y. Narazaki, Y. Naka, and M. Kawakami (2007). Electrochim. Acta 53, 117.
W. Jiang, Z. Fan, X. Chen, B. Wang, and H. Wu (2015). Metall. Mater. Trans. A 46, 1776.
K. J. M. Papis, J. F. Löffler, and P. J. Uggowitzer (2010). Mater. Sci. Eng. A 527, 2274.
E. Hajjari, M. Divandari, S. H. Razavi, S. M. Emami, T. Homma, and S. Kamado (2011). J. Mater. Sci. 46, 6491.
E. Hajjari, M. Divandari, S. H. Razavi, T. Homma, and S. Kamado (2012). Metall. Mater. Trans. A 43, 4667.
L. M. Zhao and Z. D. Zhang (2008). Scripta Mater. 58, 283.
A. C. Reber, P. J. Roach, W. H. Woodward, S. N. Khanna, and A. W. Castleman (2012). J. Phys. Chem. A 116, 8085.
R. Burgert, H. Schnöckel, A. Grubisic, X. Li, S. T. Stokes, K. H. Bowen, G. F. Ganteför, B. Kiran, and P. Jena (2008). Science 319, 438.
A. C. Reber, S. N. Khanna, P. J. Roach, W. H. Woodward, and A. W. Castleman (2007). J. Am. Chem. Soc. 129, 16098.
W. H. Woodward, N. Eyet, N. S. Shuman, J. C. Smith, A. A. Viggiano, and A. W. Castleman (2011). J. Phys. Chem. C 225, 9903.
W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen (1984). Phys. Rev. Lett. 52, 2141.
R. Ahlrichs and S. D. Elliott (1999). Phys. Chem. Chem. Phys. 1, 13.
A. C. Reber and S. N. Khanna (2017). Acc. Chem. Res. 50, 255.
Z. Luo, C. J. Grover, A. C. Reber, S. N. Khanna, and A. W. Castleman (2013). J. Am. Chem. Soc. 135, 4307.
P. J. Roach, A. C. Reber, W. H. Woodward, S. N. Khanna, and A. W. Castleman (2007). Proc. Natl. Acad. Sci. 104, 14565.
P. J. Roach, W. H. Woodward, A. C. Reber, S. N. Khanna, and A. W. Castleman (2010). Phys. Rev. B 81, 195404.
E. Wigner and E. E. Witmer (1928). Z. Phys. 51, 859.
H. Schwarz (2004). Int. J. Mass Spectrom. 237, 75.
E. Osorio, A. Vasquez, E. Florez, F. Mondragon, K. J. Donald, and W. Tiznado (2013). Phys. Chem. Chem. Phys. 15, 2222.
M. A. M. Paiva, B. M. T. C. Peluzo, J. C. Belchior, and B. R. L. Galvão (2016). Phys. Chem. Chem. Phys. 18, 31579.
Q. L. Lu, A. F. Jalbout, Q. Q. Luo, J. G. Wan, and G. H. Wang (2008). J. Chem. Phys. 128, 224707.
A. Varano, D. J. Henry, and I. Yarovsky (2010). J. Phys. Chem. A 114, 3602.
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi (1983). Science 220, 671.
D. J. Wales and J. P. K. Doye (1997). J. Phys. Chem. A 101, 5111.
B. Hartke (1993). J. Phys. Chem. 97, 9973.
M. Sierka, J. Döbler, J. Sauer, G. Santambrogio, M. Brümmer, L. Wöste, E. Janssens, G. Meijer, and K. R. Asmis (2007). Chem. Int. 46, 3372.
P. Hohenberg (1964). Phys. Rev. 136, 864.
J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter (2005). Comput. Phys. Commun. 167, 103.
G. Lippert, J. Hutter, and M. Parrinello (1997). Mol. Phys. 92, 477.
J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais (1992). Phys. Rev. B 46, 6671.
G. Kresse and J. Furthmüller (1996). Phys. Rev. B 54, 11169.
S. Goedecker, M. Teter, and J. Hutter (1996). J. Phys. Rev. B 54, 1703.
J. Zhang and M. Dolg (2015). Phys. Chem. Chem. Phys. 17, 24173.
J. Zhang and M. Dolg (2016). Phys. Chem. Chem. Phys. 18, 3003.
D. Karaboga (2005). Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, 2005.
D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga (2014). Artif. Intell. Rev. 42, 21–57.
R. P. Gupta (1981). Phys. Rev. B 23, 6265.
F. Cleri and V. Rosato (1993). Phys. Rev. B 48, 22.
A. Köhn, F. Weigend, and R. Ahlrichs (2001). Phys. Chem. Chem. Phys. 3, 711.
M. J. Piotrowski, C. G. Ungureanu, P. Tereshchuk, K. E. A. Batista, A. S. Chaves, D. Guedes-Sobrinho, and J. L. F. Da Silva (2016). J. Phys. Chem. C 120, 28844.
T. P. Martin, T. Bergmann, H. Göhlich, and T. Lange (1991). Z. Phys. D 19, 25.
T. P. Martin (1996). Phys. Rep. 273, 199.
J. Y. Yi, D. J. Oh, and J. Bernholc (1991). Phys. Rev. Lett. 67, 1594.
Q. Sun, Q. Wang, J. Z. Yu, V. Kumar, and Y. Kawazoe (2001). Phys. Rev. B 63, 193408.
X. Y. Liu, P. P. Ohotnicky, J. B. Adams, C. L. Rohrer, and R. W. Hyland (1997). Surf. Sci. 373, 357.
A. V. Ruban, H. L. Skriver, and J. K. Nörskov (1999). Phys. Rev. B 59, 15990.
R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Chem. Rev. 108, 845.
R. L. Hettich (1989). J. Am. Chem. Soc. 111, 8582.
G. Henkelman, A. Arnaldsson, and H. Jónsson (2006). Comput. Mater. Sci. 36, 354.
C. Puglia, A. Nilsson, B. Hernnäs, O. Karis, P. Bennich, and N. Mårtensson (1995). Surf. Sci. 342, 119.
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant No. 21776004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zhang, L., Ma, X., Guo, X. et al. Probing the Geometric and Electronic Effects of Aluminum–Magnesium Clusters on Reactivity Toward Oxygen. J Clust Sci 32, 445–460 (2021). https://doi.org/10.1007/s10876-020-01803-w
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10876-020-01803-w