Skip to main content
Log in

Probing the Geometric and Electronic Effects of Aluminum–Magnesium Clusters on Reactivity Toward Oxygen

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, we perform detailed density functional theory (DFT) calculations to systematically study the composition-dependent structural, thermodynamic and electronic properties of Mg–Al alloy clusters with 55 atoms. It is found that the Al-rich clusters, such as Mg12Al43 and Mg12Al43 generally possess higher thermodynamic stability and exhibit distinctive electronic properties. Especially for Mg12Al43, there is relatively large gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), suggesting that the Mg12Al43 may possess higher resistance to the reactivity with oxygen. In addition, we also study single O atom and 3O2 adsorption on the Al55, Mg55, Mg12Al43 and Mg12Al43 clusters. Through comparing their adsorption energies, we find that the H1 sites (on the hollow site of one triangular facet among two edge and one vertex atoms) energetically are the most stable O adsorption site for all clusters. Most importantly, for 3O2 adsorbed on Mg12Al43 and Mg12Al43 clusters, replacing the Al atoms of Al55 cluster with Mg atoms can effectively weaken the adsorption of oxygen and enhance the resistance to oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. E. Leuchtner, A. C. Harms, and A. W. Castleman (1989). J. Chem. Phys. 91, 2753.

    CAS  Google Scholar 

  2. H. Wang, Y. J. Ko, X. Zhang, G. Gantefoer, H. Schnoeckel, B. W. Eichhorn, P. Jena, B. Kiran, A. K. Kandalam, and K. H. Bowen, Jr. (2014). J. Chem. Phys. 140, 124309.

    PubMed  Google Scholar 

  3. H. Yang and H. Chen (2017). Eur. Phys. J. D 71, 191.

    Google Scholar 

  4. B. J. Lu, X. T. Li, Y. J. Zhao, Z. Y. Wang, and X. B. Yang (2017). AIP Advances. 7, 095023.

    Google Scholar 

  5. X. Xing, J. Wang, X. Kuang, X. Xia, C. Lu, and G. Maroulis (2016). Phys. Chem. Chem. Phys. 18, 26177.

    CAS  PubMed  Google Scholar 

  6. J. Wang, N. Du, and H. Chen (2018). Comput. Theor. Chem. 1128, 15.

    CAS  Google Scholar 

  7. C. J. Grover, A. C. Reber, and S. N. Khanna (2017). J. Chem. Phys. 146, 224301.

    PubMed  Google Scholar 

  8. S. Yin, R. Moro, X. Xu, and W. A. de Heer (2007). Phys. Rev. Lett. 98, 113401.

    PubMed  Google Scholar 

  9. T. Sondón, J. Guevara, and A. Saúl (2007). Phys. Rev. B 75, 104426.

    Google Scholar 

  10. D. Zitoun, M. Respaud, M. C. Fromen, M. J. Casanove, P. Lecante, C. Amiens, and B. Chaudret (2002). Phys. Rev. Lett. 89, 037203.

    PubMed  Google Scholar 

  11. J. Zhao, X. Huang, P. Jin, and Z. Chen (2015). Coord. Chem. Rev. 289, 315.

    Google Scholar 

  12. Y. Sun, B. Wiley, Z. Y. Li, and Y. Xia (2004). J. Am. Chem. Soc. 126, 9399.

    CAS  PubMed  Google Scholar 

  13. M. Broyer, E. Cottancin, J. Lermé, M. Pellarin, N. Del Fatti, F. Vallée, J. Burgin, C. Guillon, and P. Langot (2008). Faraday Discuss. 138, 137.

    CAS  PubMed  Google Scholar 

  14. K. W. Park, D. S. Han, and Y. E. Sung (2006). J. Power Sources 163, 82.

    CAS  Google Scholar 

  15. R. Zhao, Y. Liu, C. Liu, G. Xu, Y. Chen, Y. Tang, and T. Lu (2014). J. Mater. Chem. A 2, 20855.

    CAS  Google Scholar 

  16. Y. Chen, Z. Liang, F. Yang, Y. Liu, S. Chen, and J. Phys (2011). Chem. C 115, 24073.

    CAS  Google Scholar 

  17. S. S. Gupta and J. Datta (2006). J. Electroanal. Chem. 594, 65.

    Google Scholar 

  18. G. Wang, H. Wu, D. Wexler, H. Liu, and O. Savadogo (2010). J. Alloys Compd. 503, 1.

    Google Scholar 

  19. N. T. Khi, J. Yoon, H. Kim, S. Lee, B. Kim, H. Baik, S. J. Kwon, and K. Lee (2013). Nanoscale 5, 5738.

    PubMed  Google Scholar 

  20. S. Alayoglu and B. Eichhorn (2008). J. Am. Chem. Soc. 130, 17479.

    CAS  PubMed  Google Scholar 

  21. X. Liu, D. Tian, and C. Meng (2013). Chem. Phys. 415, 179.

    CAS  Google Scholar 

  22. R. A. Guirado-López and F. Aguilera-Granja (2008). J. Phys. Chem. C 112, 6729.

    Google Scholar 

  23. G. Ramos-Sanchez, S. Praserthdam, F. Godinez-Salomon, C. Barker, M. Moerbe, H. A. Calderon, L. A. Lartundo, M. A. Leyva, O. Solorza-Feriac, and P. B. Balbuena (2015). Phys. Chem. Chem. Phys. 17, 28286.

    CAS  PubMed  Google Scholar 

  24. A. I. Taub, P. E. Krajewski, A. A. Luo, and J. N. Owens (2007). J. Metals 59, 48.

    CAS  Google Scholar 

  25. M. Paramsothy, N. Srikanth, and M. Gupta (2008). J. Alloys Compd. 461, 200.

    CAS  Google Scholar 

  26. T. Takenaka, T. Ono, Y. Narazaki, Y. Naka, and M. Kawakami (2007). Electrochim. Acta 53, 117.

    CAS  Google Scholar 

  27. W. Jiang, Z. Fan, X. Chen, B. Wang, and H. Wu (2015). Metall. Mater. Trans. A 46, 1776.

    CAS  Google Scholar 

  28. K. J. M. Papis, J. F. Löffler, and P. J. Uggowitzer (2010). Mater. Sci. Eng. A 527, 2274.

    Google Scholar 

  29. E. Hajjari, M. Divandari, S. H. Razavi, S. M. Emami, T. Homma, and S. Kamado (2011). J. Mater. Sci. 46, 6491.

    CAS  Google Scholar 

  30. E. Hajjari, M. Divandari, S. H. Razavi, T. Homma, and S. Kamado (2012). Metall. Mater. Trans. A 43, 4667.

    CAS  Google Scholar 

  31. L. M. Zhao and Z. D. Zhang (2008). Scripta Mater. 58, 283.

    CAS  Google Scholar 

  32. A. C. Reber, P. J. Roach, W. H. Woodward, S. N. Khanna, and A. W. Castleman (2012). J. Phys. Chem. A 116, 8085.

    CAS  PubMed  Google Scholar 

  33. R. Burgert, H. Schnöckel, A. Grubisic, X. Li, S. T. Stokes, K. H. Bowen, G. F. Ganteför, B. Kiran, and P. Jena (2008). Science 319, 438.

    CAS  PubMed  Google Scholar 

  34. A. C. Reber, S. N. Khanna, P. J. Roach, W. H. Woodward, and A. W. Castleman (2007). J. Am. Chem. Soc. 129, 16098.

    CAS  PubMed  Google Scholar 

  35. W. H. Woodward, N. Eyet, N. S. Shuman, J. C. Smith, A. A. Viggiano, and A. W. Castleman (2011). J. Phys. Chem. C 225, 9903.

    Google Scholar 

  36. W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen (1984). Phys. Rev. Lett. 52, 2141.

    CAS  Google Scholar 

  37. R. Ahlrichs and S. D. Elliott (1999). Phys. Chem. Chem. Phys. 1, 13.

    CAS  Google Scholar 

  38. A. C. Reber and S. N. Khanna (2017). Acc. Chem. Res. 50, 255.

    CAS  PubMed  Google Scholar 

  39. Z. Luo, C. J. Grover, A. C. Reber, S. N. Khanna, and A. W. Castleman (2013). J. Am. Chem. Soc. 135, 4307.

    CAS  PubMed  Google Scholar 

  40. P. J. Roach, A. C. Reber, W. H. Woodward, S. N. Khanna, and A. W. Castleman (2007). Proc. Natl. Acad. Sci. 104, 14565.

    CAS  PubMed  Google Scholar 

  41. P. J. Roach, W. H. Woodward, A. C. Reber, S. N. Khanna, and A. W. Castleman (2010). Phys. Rev. B 81, 195404.

    Google Scholar 

  42. E. Wigner and E. E. Witmer (1928). Z. Phys. 51, 859.

    CAS  Google Scholar 

  43. H. Schwarz (2004). Int. J. Mass Spectrom. 237, 75.

    CAS  Google Scholar 

  44. E. Osorio, A. Vasquez, E. Florez, F. Mondragon, K. J. Donald, and W. Tiznado (2013). Phys. Chem. Chem. Phys. 15, 2222.

    CAS  PubMed  Google Scholar 

  45. M. A. M. Paiva, B. M. T. C. Peluzo, J. C. Belchior, and B. R. L. Galvão (2016). Phys. Chem. Chem. Phys. 18, 31579.

    CAS  PubMed  Google Scholar 

  46. Q. L. Lu, A. F. Jalbout, Q. Q. Luo, J. G. Wan, and G. H. Wang (2008). J. Chem. Phys. 128, 224707.

    CAS  PubMed  Google Scholar 

  47. A. Varano, D. J. Henry, and I. Yarovsky (2010). J. Phys. Chem. A 114, 3602.

    CAS  PubMed  Google Scholar 

  48. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi (1983). Science 220, 671.

    CAS  PubMed  Google Scholar 

  49. D. J. Wales and J. P. K. Doye (1997). J. Phys. Chem. A 101, 5111.

    CAS  Google Scholar 

  50. B. Hartke (1993). J. Phys. Chem. 97, 9973.

    CAS  Google Scholar 

  51. M. Sierka, J. Döbler, J. Sauer, G. Santambrogio, M. Brümmer, L. Wöste, E. Janssens, G. Meijer, and K. R. Asmis (2007). Chem. Int. 46, 3372.

    CAS  Google Scholar 

  52. P. Hohenberg (1964). Phys. Rev. 136, 864.

    Google Scholar 

  53. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter (2005). Comput. Phys. Commun. 167, 103.

    CAS  Google Scholar 

  54. G. Lippert, J. Hutter, and M. Parrinello (1997). Mol. Phys. 92, 477.

    CAS  Google Scholar 

  55. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    CAS  Google Scholar 

  56. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais (1992). Phys. Rev. B 46, 6671.

    CAS  Google Scholar 

  57. G. Kresse and J. Furthmüller (1996). Phys. Rev. B 54, 11169.

    CAS  Google Scholar 

  58. S. Goedecker, M. Teter, and J. Hutter (1996). J. Phys. Rev. B 54, 1703.

    CAS  Google Scholar 

  59. J. Zhang and M. Dolg (2015). Phys. Chem. Chem. Phys. 17, 24173.

    CAS  PubMed  Google Scholar 

  60. J. Zhang and M. Dolg (2016). Phys. Chem. Chem. Phys. 18, 3003.

    CAS  PubMed  Google Scholar 

  61. D. Karaboga (2005). Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, 2005.

  62. D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga (2014). Artif. Intell. Rev. 42, 21–57.

    Google Scholar 

  63. R. P. Gupta (1981). Phys. Rev. B 23, 6265.

    CAS  Google Scholar 

  64. F. Cleri and V. Rosato (1993). Phys. Rev. B 48, 22.

    CAS  Google Scholar 

  65. A. Köhn, F. Weigend, and R. Ahlrichs (2001). Phys. Chem. Chem. Phys. 3, 711.

    Google Scholar 

  66. M. J. Piotrowski, C. G. Ungureanu, P. Tereshchuk, K. E. A. Batista, A. S. Chaves, D. Guedes-Sobrinho, and J. L. F. Da Silva (2016). J. Phys. Chem. C 120, 28844.

    CAS  Google Scholar 

  67. T. P. Martin, T. Bergmann, H. Göhlich, and T. Lange (1991). Z. Phys. D 19, 25.

    CAS  Google Scholar 

  68. T. P. Martin (1996). Phys. Rep. 273, 199.

    CAS  Google Scholar 

  69. J. Y. Yi, D. J. Oh, and J. Bernholc (1991). Phys. Rev. Lett. 67, 1594.

    CAS  PubMed  Google Scholar 

  70. Q. Sun, Q. Wang, J. Z. Yu, V. Kumar, and Y. Kawazoe (2001). Phys. Rev. B 63, 193408.

    Google Scholar 

  71. X. Y. Liu, P. P. Ohotnicky, J. B. Adams, C. L. Rohrer, and R. W. Hyland (1997). Surf. Sci. 373, 357.

    Google Scholar 

  72. A. V. Ruban, H. L. Skriver, and J. K. Nörskov (1999). Phys. Rev. B 59, 15990.

    Google Scholar 

  73. R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Chem. Rev. 108, 845.

    CAS  PubMed  Google Scholar 

  74. R. L. Hettich (1989). J. Am. Chem. Soc. 111, 8582.

    CAS  Google Scholar 

  75. G. Henkelman, A. Arnaldsson, and H. Jónsson (2006). Comput. Mater. Sci. 36, 354.

    Google Scholar 

  76. C. Puglia, A. Nilsson, B. Hernnäs, O. Karis, P. Bennich, and N. Mårtensson (1995). Surf. Sci. 342, 119.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 21776004)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ma, X., Guo, X. et al. Probing the Geometric and Electronic Effects of Aluminum–Magnesium Clusters on Reactivity Toward Oxygen. J Clust Sci 32, 445–460 (2021). https://doi.org/10.1007/s10876-020-01803-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01803-w

Keywords

Navigation