Skip to main content

Controlling Metal-Organic Structure by Tuning Molecular Size, Supported Substrate, and Type of Metal


Metal-organic structures are controllably prepared by tuning molecular size, supported substrates, and different kinds of metals. They are characterized by ultra-high vacuum low-temperature scanning tunnelling microscopy and Density functional theory calculations. The relatively larger size of all-trans-retinoic acid (ReA) compared to (2E,4E)-3-methyl-5-(2,6,6-trimethylcyclohex-1-enyl)penta-2,4-dienoic acid (DiA) leads to a bigger gap between neighboring ReA in a tetramer and allows for insertion of molecules, forming high density patterns. ReA forms various structures with different ratios (4:0, 3:1, 2:2) of the two chiral enantiomers on the less reactive Au(111) other than Ag(111). Unlike transition metals, electrostatic attraction between molecules and alkali metals is the origin of the formation of large quartet islands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. P. García-García, M. Müller, and A. Corma (2014). Chem. Sci. 5, 2979.

    Article  Google Scholar 

  2. B. O. Stefan Leininger and Peter J. Stang (2000). Chem. Rev. 100, 853–908.

    Article  Google Scholar 

  3. T. R. Cook, Y. R. Zheng, and P. J. Stang (2013). Chem. Rev. 113, 734–777.

    Article  CAS  Google Scholar 

  4. B. Moulton and M. J. Zaworotko (2001). Chem. Rev. 101, 1629–1658.

    Article  CAS  Google Scholar 

  5. M. El Garah, A. Ciesielski, N. Marets, V. Bulach, M. W. Hosseini, and P. Samori (2014). Chem. Commun. 50, 12250–12253.

    Article  CAS  Google Scholar 

  6. Y.-F. Y. En-Qing Gao, Shi-Qiang Bai, Zheng He, and C.-H. Yan (2004). J. Am. Chem. Soc. 126, 1419–1429.

    Article  Google Scholar 

  7. T. Suzuki, T. Lutz, D. Payer, N. Lin, S. L. Tait, G. Costantini, and K. Kern (2009). Phys. Chem. Chem. Phys. 11, 6498–6504.

    Article  CAS  Google Scholar 

  8. P. Larpent, A. Jouaiti, N. Kyritsakas, and M. W. Hosseini (2019). Chem. Commun. 55, 91–94.

    Article  CAS  Google Scholar 

  9. P. Knecht, N. Suryadevara, B. Zhang, J. Reichert, M. Ruben, J. V. Barth, S. Klyatskaya, and A. C. Papageorgiou (2018). Chem. Commun. 54, 10072–10075.

    Article  CAS  Google Scholar 

  10. X. Zhang, N. Li, L. Liu, G. Gu, C. Li, H. Tang, L. Peng, S. Hou, and Y. Wang (2016). Chem. Commun. 52, 10578–10581.

    Article  CAS  Google Scholar 

  11. T. Lin, G. Kuang, X. S. Shang, P. N. Liu, and N. Lin (2014). Chem. Commun. 50, 15327–15329.

    Article  CAS  Google Scholar 

  12. T. A. Pham, F. Song, M. N. Alberti, M. T. Nguyen, N. Trapp, C. Thilgen, F. Diederich, and M. Stohr (2015). Chem. Commun. 51, 14473–14476.

    Article  CAS  Google Scholar 

  13. J. Kuliga, L. Zhang, M. Lepper, D. Lungerich, H. Holzel, N. Jux, H. P. Steinruck, and H. Marbach (2018). Phys. Chem. Chem. Phys. 20, 25062–25068.

    Article  CAS  Google Scholar 

  14. D. Hotger, M. Etzkorn, C. Morchutt, B. Wurster, J. Dreiser, S. Stepanow, D. Grumelli, R. Gutzler, and K. Kern (2019). Phys. Chem. Chem. Phys. 21, 2587–2594.

    Article  Google Scholar 

  15. H. Kong, L. Wang, Q. Tan, C. Zhang, Q. Sun, and W. Xu (2014). Chem. Commun. 50, 3242–3244.

    Article  CAS  Google Scholar 

  16. C. Wang, Q. Fan, S. Hu, H. Ju, X. Feng, Y. Han, H. Pan, J. Zhu, and J. M. Gottfried (2014). Chem. Commun. 50, 8291–8294.

    Article  CAS  Google Scholar 

  17. G. Kresse and D. Joubert (1999). Phys. Rev. B. 59, 1758–1776.

    Article  CAS  Google Scholar 

  18. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865–3869.

    Article  CAS  Google Scholar 

  19. C. Yuan, N. Xue, X. Zhang, Y. Zhang, N. Li, Q. Xue, T. Wu, S. Hou, and Y. Wang (2019). Chem. Commun. 55, 5427–5430.

    Article  CAS  Google Scholar 

  20. S. Karan, Y. Wang, R. Robles, N. Lorente, and R. Berndt (2013). J. Am. Chem. Soc. 135, 14004–14007.

    Article  CAS  Google Scholar 

  21. C. Li, N. Li, L. Liu, Y. Zhang, C. Yuan, L. Peng, S. Hou, and Y. Wang (2017). Chem. Commun. 53, 2252–2255.

    Article  CAS  Google Scholar 

Download references


This work is supported by the Ministry of Science and Technology (2018YFA0306003,2017YFA0205003), National Natural Science Foundation of China (21972002,21902003) and China Postdoctoral Science Foundation (CPSF) (2019T120010, 2019M660296). DFT calculations are carried out on TianHe-1A at National Supercomputer Center in Tianjin and supported by High-performance Computing Platform of Peking University.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Shimin Hou or Yongfeng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Xue, N., Zhang, Y. et al. Controlling Metal-Organic Structure by Tuning Molecular Size, Supported Substrate, and Type of Metal. J Clust Sci 32, 327–330 (2021).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • STM
  • Self-assembly
  • Metal-organic structure
  • Chirality coordination
  • Substrate effect