Skip to main content

Advertisement

Log in

pH Dependent Drug Release of Silibinin, a Polyphenol Conjugated with Magnetic Nanoparticle Against the Human Colon Cancer Cell

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Magnetic nanocarriers has become popularised in the research field as well as in the biomedical application due to their unique exotic possession, and processability. The present study involves the synthesis of nanocarrier, Iron Oxide nanoparticle conjugated with silibinin (SLN-Fe2O3) using co-precipitation method and also to detect their efficacy against the colon cancer cell. The synthesized SLN-Fe2O3 were undertaken for several analysis including UV-visible spectroscopy, dynamic light scattering, scanning electron microscope, Fourier transform infra-red spectroscopy, zeta potential analysis, and X-ray diffraction analysis. The analysis had end up in confirming the polydispersity and crystalline nature of the synthesized SLN-Fe2O3 with an average size of 70 nm. Further the synthesized SLN-Fe2O3 was undertaken for in vitro (AO/EtBR and DAPI) studies to find their effectiveness against human colon cancer using HT-29 cell line. The fragmentation occurs in nuclear material of the SLN-Fe2O3 treated cells had revealed that the cell death was due to the induction of apoptotic signals in the treated cancer cells. Thus the current study had clearly validated the potency of synthesized Iron Oxide nanoparticles conjugated with silibinin (SLN-Fe2O3) against the colon cancer cell and holds a promising therapeutic potency in treating cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. O. Gersten and J. R. Wilmoth (1991). The cancer transition in Japan since. J. Demogr. Res. 7, 271–306.

    Article  Google Scholar 

  2. F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal (2018). Global cancer statistics, GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 21–34.

    Google Scholar 

  3. E. H. Schreuders, A. Ruco, L. Rabeneck, R. E. Schoen, J. J. Y. Sung, G. P. Young, and E. J. Kuipers (2015). Colorectal cancer screening: a global overview of existing programmes. Gut 64, 1637–1649.

    Article  Google Scholar 

  4. M. Arnold, M. S. Sierra, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray (2017). Global patterns and trends in colorectal cancer incidenceand mortality. Gut 66, 683–691.

    Article  Google Scholar 

  5. P. Gervaz, P. Bucher, and P. Morel (2004). Two colons-two cancers: paradigm shift and clinical implications. J. Surg. Oncol. 88, (4), 261–266.

    Article  Google Scholar 

  6. M. Mik, M. Berut, L. Dziki, R. Trzcinski, and A. Dziki (2017). Right and left-sided colon cancer—clinical and pathological differences of the disease entity in one organ. Arch. Med. Sci. 13, (1), 157–162.

    Article  Google Scholar 

  7. N. Hugen, G. Brown, R. Glynne-Jones, J. H. de Wilt, and I. D. Nagtegaal (2016). Advances in the care of patients with mucinous colorectal cancer. Nat. Rev. Clin. Oncol. 13, (6), 361–369.

    Article  CAS  Google Scholar 

  8. S. C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, and D. Thompsett (2004). Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals. Angew. Chem. Int. Ed. 7, 43–45.

    Google Scholar 

  9. S. Mornet, S. Vasseur, F. Grasset, P. Verveka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, and E. Duguet (2006). Magnetic nanoparticle design for medical applications. Prog. Solid State Chem. 34, 237.

    Article  CAS  Google Scholar 

  10. D. W. Elliott and W. X. Zhang (2001). Environmental remediation by nanotech. Environ. Sci. Technol. 35, 922.

    Article  Google Scholar 

  11. Q. Quan, J. Xie, H. Gao, M. Yang, F. Zhang, G. Liu, X. Lin, A. Wang, H. S. Eden, S. Lee, G. Zhang, and X. Chen (2011). HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol. Pharm. 8, 16–69.

    Article  Google Scholar 

  12. R. Hiergeist, W. Andre, N. Buske, R. Hergt, I. Hilger, U. Richter, and W. Kaiser (1999). Application of magnetite ferrofluids for hyperthermia. J. Magn. Magn. Mater. 201, 420.

    Article  CAS  Google Scholar 

  13. J. J. O’Shea, S. M. Holland, and L. M. Staudt (2013). JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med. 368, (2), 161–170.

    Article  Google Scholar 

  14. R. P. Singh, K. Raina, G. Deep, D. Chan, and R. Agarwal (2009). Silibinin suppresses growth of human prostate carcinoma PC-3 orthotopic xenograft via activation of extracellular signal-regulated kinase 1/2 and inhibition of signal transducers and activators of transcription signaling. Clin. Cancer Res. 15, 13–21.

    Google Scholar 

  15. C. Loguercio, P. Andreone, C. Brisc, M. C. Brisc, E. Bugianesi, and M. Chiaramonte (2012). Silybin combined with phosphatidylcholine and vitamin E in patients with nonalcoholic fatty liver disease: a randomized controlled trial. Free Radic. Biol. Med. 52, (9), 1658–1665.

    Article  CAS  Google Scholar 

  16. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li (2004). Monodisperse mfe2o4 (m = fe, co, mn) nanoparticles. J. Am. Chem. Soc. 126, (1), 273–279.

    Article  CAS  Google Scholar 

  17. M. M. De Goies, W. de Paiva Araújo, R. B. da Silva, G. E. da Luz Jr, and J. M. Soares (2019). Bi25FeO40–Fe3O4–Fe2O3 composites: synthesis, structural characterization, magnetic and UV–visible photocatalytic properties. J. Alloys Compd. 785, 598–602.

    Article  Google Scholar 

  18. M. Mombeini, G. Saki, L. Khorsandi, and N. Bavarsad (2018). Effects of silymarin-loaded nanoparticles on HT-29 human colon cancer cells. Medicina 54, (1), 1.

    Article  Google Scholar 

  19. Carter N (2015). Physical properties of iron oxide nanoparticles. Digital common library. 40.

  20. C. Cheng, Y. Wen, X. Xu, and H. Gu (2009). Tunable synthesis of carboxyl-functionalized magnetite nanocrystal clusters with uniform size. J. Mater. Chem. 19, 8782–8788.

    Article  CAS  Google Scholar 

  21. A. Sharma, C. Cornejo, J. Mihalic, A. Geyh, D. E. Bordelon, P. Korangath, F. Westphal, C. Gruettner, and R. Ivkov (2018). Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles. Sci. Rep. 1, 4916.

    Article  Google Scholar 

  22. G. El-Mahdy, A. Atta, and H. Al-Lohedan (2014). Synthesis and evaluation of poly (sodium 2-acrylamido-2-methylpropane sulfonate-co-styrene)/magnetite nanoparticle composites as corrosion inhibitors for steel. Molecules 19, (2), 1713–1731.

    Article  Google Scholar 

  23. T. T. H. Pham, C. Cao, and S. J. Sim (2008). Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations. J. Magn. Magn. Mater. 320, 2049–2205.

    Article  Google Scholar 

  24. A. Lassoued, M. S. Lassoued, B. Dkhil, S. Ammar, and A. Gadri (2018). Synthesis, photoluminescence and Magnetic properties of iron oxide (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods. Phys. E Low Dimens. Syst. Nanostruct. 101, 212–219.

    Article  CAS  Google Scholar 

  25. E. Illes, M. Szekeres, I. Y. Tóth, A. Szabó, B. Iván, R. Turcu, L. Vékás, I. Zupkó, G. Jaics, and E. Tombácz (2018). Multifunctional PEG-carboxylate copolymer coated superparamagnetic iron oxide nanoparticles for biomedical application. J. Magn. Magn. Mater. 451, 710–720.

    Article  CAS  Google Scholar 

  26. W. Xie, Z. Guo, F. Gao, Q. Gao, D. Wang, B. S. Liaw, Q. Cai, X. Sun, X. Wang, and L. Zhao (2018). Shape-, size-and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 8, (12), 3284.

    Article  CAS  Google Scholar 

  27. D. S. Kumar, K. C. Naidu, M. M. Rafi, K. P. Nazeer, A. A. Begam, and G. R. Kumar (2018). Structural and dielectric properties of superparamagnetic iron oxide nanoparticles (SPIONs) stabilized by sugar solutions. Mater. Sci. 36, (1), 123–133.

    CAS  Google Scholar 

  28. H. K. Can, S. Kavlak, S. ParviziKhosroshahi, and A. Güner (2018). Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs). Artif. Cells Nanomed. Biotechnol. 46, (2), 21–31.

    Google Scholar 

  29. A. Lassoued, B. Dkhil, A. Gadri, and A. Ammar (2017). Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys. 7, 3007–3015.

    Article  Google Scholar 

  30. K. K. Arumugam, G. S. Subramanian, S. R. Mallayasamy, R. K. Averineni, M. S. Reddy, and N. A. Udupa (2008). Study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharm. 58, 287–297.

    Article  CAS  Google Scholar 

  31. S. W. Tait and D. R. Green (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell. Biol. 11, 621–632.

    Article  CAS  Google Scholar 

  32. S. Mohan, S. I. Abdelwahab, B. Kamalidehghan, S. Syam, K. S. May, N. S. Harmal, N. Shafifiyaz, A. H. Hadi, N. M. Hashim, M. Rahmani, M. M. Taha, S. C. Cheah, and A. Zajm (2012). Involvement of NF-κB and Bcl2/Bax signaling pathways in the apoptosis of MCF7 cells induced by a xanthone compound Pyranocycloartobiloxanthone A. Phytomedicine. 19, 1007–1015.

    Article  CAS  Google Scholar 

  33. Stanislaw Krajewski, Maryla Krajewska, Lisa M. Ellerby, Kate Welsh, Zhihua Xie, Quinn L. Deveraux, Guy S. Salvesen, Dale E. Bredesen, Robert E. Rosenthal, Gary Fiskum, and John C. Reed (1999). Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc. Natl. Acad. Sci. USA 96, 5752–5757.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DST-FIST, Department of Zoology, Bharathiar University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manickam Paulpandi or Arul Narayanasamy.

Ethics declarations

Conflict of Interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manickam Paulpandi and Arul Narayanasamy share equal correspondence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya, S., Thiruvenkataswamy, S., Kavithaa, K. et al. pH Dependent Drug Release of Silibinin, a Polyphenol Conjugated with Magnetic Nanoparticle Against the Human Colon Cancer Cell. J Clust Sci 32, 305–317 (2021). https://doi.org/10.1007/s10876-020-01789-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01789-5

Keywords

Navigation