Site-Selective Photoinduced Electron Transfer of Excited-State Intermolecular Hydrogen-Bonded Cluster in Solution

Abstract

In this work, the electronic excited states of hypoxanthine in solution such as water and acetonitrile are investigated by the time-dependent density functional theory (TDDFT) method. We demonstrated for the first time that the intermolecular excited-state electron transfer (ESET) from solvents to the hypoxanthine through excited-state intermolecular hydrogen-bonds cluster exhibits obvious site-selectivity. Excited-state electron transfer could only occur at the N7 site of hypoxanthine molecule in water solution, while that is the N9 site in acetonitrile. Potential energy surfaces for different electronic states of hypoxanthine with and without the influence of the excited-state hydrogen bonding cluster are also discussed. Site-selective ESET is proposed to induce the internal conversion of hypoxanthine from S2 state to S1 at a conical intersection, which is responsible for the ultrashort lifetime of hypoxanthine in excited state in solution. These results pave a novel way to understand the photophysical and photochemical behaviors of DNA bases and their derivatives in solution phase.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    K. Yoshihara (1999). Adv. Chem. Phys. 107, 371–402.

    CAS  Google Scholar 

  2. 2.

    T. Kobayashi, Y. Takagi, H. Kandori, K. Kemnitz, and K. Yoshihara (1991). Chem. Phys. Lett. 180, 416–422.

    CAS  Article  Google Scholar 

  3. 3.

    Y. Nagasawa, A. P. Yartsev, K. Tominaga, A. E. Johnson, and K. Yoshihara (1993). J. Am. Chem. Soc. 115, 7922–7923.

    CAS  Article  Google Scholar 

  4. 4.

    M. D. Ward (1997). Chem. Soc. Rev. 26, 365–375.

    CAS  Article  Google Scholar 

  5. 5.

    P. Piotrowiak (1999). Chem. Soc. Rev. 28, 143–150.

    CAS  Article  Google Scholar 

  6. 6.

    M. C. Jimenez, M. A. Miranda, and R. Tormos (2005). Chem. Soc. Rev. 34, 783–796.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    A. C. Benniston and A. Harriman (2006). Chem. Soc. Rev. 35, 169–179.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B 111, 8940–8945.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    H. B. Yang, N. Das, F. Huang, A. M. Hawkridge, D. D. Díaz, A. M. Arif, M. G. Finn, D. C. Muddiman, and P. J. Stang (2006). J. Am. Chem. Soc. 128, 10014–10015.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    W. Domcke and A. L. Sobolewski (2003). Science 302, 1693–1694.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    M. Ramegowda (2013). New J. Chem. 37, 2648–2653.

    CAS  Article  Google Scholar 

  12. 12.

    Z. X. Huang, D. M. Ji, A. D. Xia, F. Koberling, M. Patting, and R. Erdmann (2005). J. Am. Chem. Soc. 127, 8064–8066.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    W. Lv, N. Li, Y. L. Li, Y. Li, and A. D. Xia (2006). J. Am. Chem. Soc. 128, 10281–10287.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    D. Aumiler, S. F. Wang, X. D. Chen, and A. D. Xia (2009). Am. Chem. Soc. 131, 5742.

    CAS  Article  Google Scholar 

  15. 15.

    C. R. Waidmann, X. Zhou, E. A. Tsai, W. Kaminsky, D. A. Hrovat, W. T. Borden, and J. M. Mayer (2009). Am. Chem. Soc. 131, 4729–4743.

    CAS  Article  Google Scholar 

  16. 16.

    P. Jaramillo, K. Coutinho, and S. Canuto (2009). J. Phys. Chem. A 113, 12485–12495.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    S. Abbruzzetti, E. Grandi, C. Viappiani, S. Bologna, B. Campanini, S. Raboni, S. Bettati, and A. Mozzarelli (2005). J. Am. Chem. Soc. 127, 626–635.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    G. J. Zhao and K. L. Han (2008). Biophys. J. 94, 38–46.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    L. Zhao, P. W. Zhou, and G. J. Zhao (2016). RSC Adv. 6, 64323–64331.

    CAS  Article  Google Scholar 

  20. 20.

    C. E. Crespo-Hernandez, B. Cohen, P. M. Hare, and B. Kohler (2004). Chem. Rev. 104, 1977–2019.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernandez, and B. Kohler (2009). Annu. Rev. Phys. Chem. 60, 217–239.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    A. L. D. Sobolewski (2006). Europhys. News 37, 20–23.

    CAS  Article  Google Scholar 

  23. 23.

    L. Zhao, P. Zhou, and G. Zhao (2016). J. Chem. Phys. 145, 044316.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  24. 24.

    C. Wang, Y. Liu, X. Feng, C. Y. Zhou, Y. L. Liu, and X. Yu (2019). Angew. Chem. Int. Ed. 58, (34), 11642–11646.

    CAS  Article  Google Scholar 

  25. 25.

    M. L. Shukla and J. Leszczynski Radiation Induced Molecular Phenomena in Nucleic Acids (Springer, Berlin, 2008).

    Google Scholar 

  26. 26.

    A. Abo-Riziq, L. Grace, E. Nir, M. Kabelac, P. Hobza, and M. S. de Vries (2005). Natl. Acad. Sci. USA 102, 20–23.

    CAS  Article  Google Scholar 

  27. 27.

    S. Yamazaki, A. L. Sobolewski, and W. Domcke (2009). Phys. Chem. Chem. Phys. 11, 10165–10174.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    C. E. Crespo-Hernandez and B. Kohler (2004). J. Phys. Chem. B 108, 11182–11188.

    CAS  Article  Google Scholar 

  29. 29.

    W. Domcke, D. Yarkony, and H. Köppel Conical Intersections: Electronic Structure, Dynamics and Spectroscopy, vol. 15 (World Scientific, Singapore, 2004), pp. 41–102.

    Google Scholar 

  30. 30.

    S. Perun, A. L. Sobolewski, and W. Domcke (2006). J. Phys. Chem. A 110, 9031–9038.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    H. L. Barks, R. Buckley, G. A. Grieves, E. Di Mauro, N. V. Hud, and T. M. Orlando (2010). ChemBioChem 11, 1240–1243.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    M. P. Callahan, K. E. Smith, H. J. Cleaves, J. Ruzicka, J. C. Stern, D. P. Glavin, C. H. House, and J. P. Dworkin (2011). Proc. Natl. Acad. Sci. USA 108, 13995–13998.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    G. Wachtershauser (1988). Proc. Natl. Acad. Sci. USA 85, 1134–1135.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    R. J. Malone, A. M. Miller, and B. Kohler (2003). Photochem. Photobiol. 77, 158–164.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    B. Cohen, P. M. Hare, and B. Kohler (2003). J. Am. Chem. Soc. 125, 13594–13601.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    E. Mburu and S. Matsika (2008). J. Phys. Chem. A 112, 12485–12491.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    M. P. Callahan, B. Crews, A. Abo-Riziq, L. Grace, M. S. de Vries, Z. Gengeliczki, T. M. Holmes, and G. A. Hill (2007). Phys. Chem. Chem. Phys. 9, 4587–4591.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    M. Mons, F. Piuzzi, I. Dimicoli, L. Gorb, and J. Leszczynski (2006). J. Phys. Chem. A 110, 10921–10924.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    K. Rottger, R. Siewertsen, and F. Temps (2012). Chem. Phys. Lett. 536, 140–146.

    Article  CAS  Google Scholar 

  40. 40.

    J. P. Villabona-Monsalve, R. Noria, S. Matsika, and J. Peon (2012). J. Am. Chem. Soc. 134, 7820–7829.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    J. W. Jones and R. K. Robins (1963). J. Am. Chem. Soc. 85, 193–201.

    CAS  Article  Google Scholar 

  42. 42.

    Y. Nishimura, S. Takahashi, T. Yamamoto, M. Tsuboi, M. Hattori, K. Miura, K. Yamaguchi, S. Ohtani, and T. Hata (1980). Nucleic Acids Res. 8, 1107–1119.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    E. Kulikowska, A. Bzowska, J. Wierzchowski, and D. Shugar (1986). Biochim. Biophys. Acta 874, 355–363.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    V. Lemaur, M. Steel, D. Beljonne, J. L. Bredas, and J. Cornil (2005). J. Am. Chem. Soc. 127, 6077–6086.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    A. D. Becke (1993). J. Chem. Phys. 98, 5648–5652.

    CAS  Article  Google Scholar 

  46. 46.

    A. D. Becke (1988). Phys. Rev. A 38, 3098–3100.

    CAS  Article  Google Scholar 

  47. 47.

    C. T. Lee, W. T. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785–789.

    CAS  Article  Google Scholar 

  48. 48.

    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch (1994). J. Phys. Chem. 98, 11623–11627.

    CAS  Article  Google Scholar 

  49. 49.

    A. V. Marenich, C. J. Cramer, and D. G. Truhlar (2009). J. Phys. Chem. B 113, 6378–6396.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople Density Functional Theory Study of Degradation of Tetraalkylammonium Hydroxides (Gaussian Inc, Wallingford, 2010).

    Google Scholar 

  51. 51.

    J. F. Gerster, R. K. Robins, and J. W. Jones (1963). J. Org. Chem. 28, 945.

    CAS  Article  Google Scholar 

  52. 52.

    M. Leng, F. Pochon, and A. Michelso (1968). Biochim. Biophys. Acta 169, 338–349.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    L. C. Zhou, G. J. Zhao, J. F. Liu, K. L. Han, Y. K. Wu, X. J. Peng, and M. T. Sun (2007). J. Photochem. Photobiol. A 187, 305–310.

    CAS  Article  Google Scholar 

  54. 54.

    D. Sicinska, D. G. Truhlar, and P. Paneth (2005). J. Am. Chem. Soc. 127, 5414–5422.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21573229, 21873068 and 21422309). G.J.Z. also thanks the financial support from the Frontier Science Project of the Knowledge Innovation Program of Chinese Academy of Sciences (CAS), Project for Excellent Member of CAS Youth Innovation Promotion Association, the Open Research Funds of State Key Laboratory of Bioelectronics (Southeast University) and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (Wuhan Institute of Physics and Mathematics of Chinese Academy of Sciences), and Double First-Rate Project of Tianjin University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guangjiu Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Guo, Y., Feng, X. et al. Site-Selective Photoinduced Electron Transfer of Excited-State Intermolecular Hydrogen-Bonded Cluster in Solution. J Clust Sci 32, 93–99 (2021). https://doi.org/10.1007/s10876-020-01765-z

Download citation

Keywords

  • Hydrogen bond
  • Excited states
  • Charge transfer
  • Conical intersection
  • Internal conversion