In vitro Cytotoxicity and Antibacterial Activity of Optimized Silver Nanoparticles Against Wound Infectious Bacteria and Their Morphological Studies

Abstract

The present study reports the optimized silver nanoparticles (AgNPs). They were tested against, three wound infecting gram-positive and gram-negative pathogenic bacteria viz., B. subtilis, S. aureus, M. luteus, E. coli, K. pneumoniae and P. aeruginosa at 10 µg concentration. In the antibacterial activity of optimized AgNPs, P. aeruginosa was found remarkably sensitive to the AgNPs with 20.3 ± 1.86 mm of inhibition zone. The standard antibiotics of streptomycin, gentamycin, ampicillin and erythromycin at 10 µg, when tested against the bacteria, which revealed that gentamycin showed high antibacterial activity against all the six wound infecting pathogenic bacteria. The MIC and MBC concentrations evaluated against the bacteria showed were 4.0 ± 1.00 µg/mL and 6.3 ± 0.47 µg/mL for S. aureus, respectively. The normal morphology of tested bacteria was changed when treated with optimized AgNPs as evidenced under TEM analysis. The optimized AgNPs impregnated on cotton fabrics showed high antibacterial activity against tested bacteria. Thereafter there was a gradual decrement in antibacterial activity against the bacteria at 2nd, 3rd and 4th wash. The cytotoxicity effect of optimized AgNPs treated normal cell (Vero) recorded a maximum IC50 value 20 µg/mL. Our research outcome opens up new improved antimicrobial composition in pharmaceutical and medical sectors.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    G. Zhao and S. Stevens (1998). Biometals. 11, (3), 27–32.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Q. H. Tran, V. Nguyen, and A. Le (2013). Adv. Nat. Sci. Nanosci. Nanotechnol. 4, (3), 033001.

    Article  Google Scholar 

  3. 3.

    A. Hebeish, F. Abdel-Mohdy, M. Fouda, Z. Elsaid, S. Essam, G. H. Tammam, and E. A. Drees (2011). Carbohyd. Polym. 86, (4), 1684–1691.

    CAS  Article  Google Scholar 

  4. 4.

    P. Mohanpuria, N. Rana, and S. Yadav (2008). J. Nanopart. Res. 10, 507–517.

    CAS  Article  Google Scholar 

  5. 5.

    N. A. Al-Dhabi, A. K. M. Ghilan, M. V. Arasu, and V. Duraipandiyan (2019). J. Photochem. Photobiol. B. 189, 176–184.

    Article  Google Scholar 

  6. 6.

    I. Sondi and B. Salopek-Sondi (2004). J. Colloid. Interf. Sci. 275, (1), 177–182.

    CAS  Article  Google Scholar 

  7. 7.

    R. El-Shishtawy, A. Asiri, N. Abdelwahed, and M. Al-Otaibi (2011). Cellulose. 18, 75–82.

    CAS  Article  Google Scholar 

  8. 8.

    P. Balashanmugam and K. P. Thangavelu (2015). Int. J. Nanomed. 10, 87–97.

    CAS  Article  Google Scholar 

  9. 9.

    P. Balashanmugam, M. Balakumaran, R. Murugan, K. Dhanapal, and P. Kalaichelvan (2016). Microbiol. Res. 192, 52–64.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    P. Balashanmugam, D. Mukesh Kumar, R. Murugan, P. Perumal, K. P. Thangavelu, H. J. Kim, V. Singh, and S. K. Rangarajulu (2017). European J. Pharm. Sci. 100, 187–196.

    Article  Google Scholar 

  11. 11.

    C. Perez, M. Paul, and P. Bazerque (1990). Acta Biol. Med. Exp. 15, 113–115.

    Google Scholar 

  12. 12.

    H. S. Jung, S. Komatsu, M. Ikebe, and R. Craig (2008). Mol. Biol. Cell. 19, 3234–3242.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    R. Vivek, R. Thangam, K. Muthuchelian, P. Gunasekaran, K. Kaveri, and S. Kannan (2012). Process Biochem. 47, (12), 2405–2410.

    CAS  Article  Google Scholar 

  14. 14.

    P. Balashanmugam, P. Durai, M. D. Balakumaran, and P. T. Kalaichelvan (2016). J. Photochem. Photobiol. B. 165, 163–173.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    P. Balashanmugam, K. Mosa Christas, B. M. Sandilya Sharma, S. Jagadeeswari, and A. Tamil Selvi (2019). IET Nanobiotecnol. 13, 339–344.

    Article  Google Scholar 

  16. 16.

    N. A. Al-Dhabi, A. K. M. Ghilan, G. A. Esmail, M. V. Arasu, V. Duraipandiyan, and K. Ponmurugan (2019). J Photochem. Photobiol. B. 197, 111529.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    D. Philip (2010). Physica. E. 42, (5), 1417–1424.

    CAS  Article  Google Scholar 

  18. 18.

    U. R. Palaniswamy, R. J. McAvoy, and B. B. Bible (2001). J. Am. Soc. Hortic. Sci. 126, (5), 537–543.

    CAS  Article  Google Scholar 

  19. 19.

    M. Vijayakumar, K. Priya, F. Nancy, A. Noorlida, and A. Ahmed (2013). Ind. Crop. Prod. 41, (1), 235–240.

    CAS  Article  Google Scholar 

  20. 20.

    V. R. Netala, V. S. Kotakadi, S. B. Ghosh, P. Bobbu, V. Nagam, K. K. Sharma, and V. Tartte (2014). Int. J. Pharm. Pharm. Sci. 6, (10), 298–300.

    Google Scholar 

  21. 21.

    P. Logeswari, S. Silambarasan, and J. Abraham (2015). J. Saudi Chem. Soc. 19, (3), 311–317.

    Article  Google Scholar 

  22. 22.

    J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman (2005). Nanotechnol. 16, (10), 2346–2353.

    CAS  Article  Google Scholar 

  23. 23.

    H. Y. Song, K. K. Ko, I. H. Oh, and B. T. Lee (2006). Cell. Mater. 11, 58.

    Google Scholar 

  24. 24.

    Q. Feng, J. Wu, G. Chen, F. Cui, T. Kim, and J. Kim (2000). J. Biomed Mater. Res. 52, (4), 662–668.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    K. S. Hwan, H. S. Lee, D. S. Ryu, S. J. Choi, and D. S. Lee (2011). Korean J. Microbiol. Biotechnol. 39, (1), 77–85.

    Google Scholar 

  26. 26.

    M. Gnanadesigan, M. Anand, S. Ravikumar, M. Maruthupandy, M. Syed Ali, V. Vijayakumar, and A. K. Kumaraguru (2012). Appl. Nanosci. 2, (2), 143–147.

    CAS  Article  Google Scholar 

  27. 27.

    S. Vivekanandhan, M. Misra, and A. K. Mohanty (2009). J. Nanosci. Nanotechno. 9, (12), 6828–6833.

    CAS  Article  Google Scholar 

  28. 28.

    N. Duran, P. Marcato, G. De Souza, O. Alves, and E. Esposito (2007). J. Biomed. Nanotechnol. 3, (2), 203–208.

    CAS  Article  Google Scholar 

  29. 29.

    G. Sathishkumar, C. Gobinath, K. Karpagam, V. Hemamalini, K. Premkumar, and S. Sivaramakrishnan (2012). Colloid. Surface. B. 95, 235–240.

    CAS  Article  Google Scholar 

  30. 30.

    H. Lee, H. Park, Y. Lee, K. Kim, and S. Park (2007). Chem. Commun. 1, (28), 2959–2961.

    Article  Google Scholar 

  31. 31.

    A. M. Rifaya and R. M. Meyyappan (2014). Int. J. Pharm. Pharm. Sci. 6, (2), 342–346.

    Google Scholar 

  32. 32.

    Y. H. Lu, H. Lin, Y. Y. Chen, C. Wang, and Y. R. Hua (2007). Fiber. Polym. 8, (1), 1–6.

    CAS  Article  Google Scholar 

  33. 33.

    O. Lidwell, A. Towers, J. Ballard, and B. Gladstone (1974). J. Appl. Bacteriol. 37, 649–656.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    H. Barani (2014). New J. Chem. 38, 4365–4370.

    CAS  Article  Google Scholar 

  35. 35.

    M. Rai, A. Yadav, and A. Gade (2009). Biotechnol. Adv. 27, (1), 76–83.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    A. Tripathi, N. Chandrasekaran, A. M. Raichur, and A. Mukherjee (2009). J. Biomed. Nanotechnol. 5, (1), 93–98.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    S. Hosseini and A. Pairovi (2005). Iran. Polym. J. 14, (11), 934–940.

    CAS  Google Scholar 

  38. 38.

    S. Sudha, N. Sarita, and D. Kumar (2014). Int. J. Adv. Res. Sci. Eng. Technol. 2, (5), 78–88.

    Google Scholar 

  39. 39.

    S. Verma, S. Abirami, and M. Shreshtha (2013). J. Microbiol. Biotechnol. Res. 3, (3), 54–71.

    Google Scholar 

  40. 40.

    E. M. Luther, Y. Koehler, J. Diendorf, M. Epple, and R. Dringen (2011). Nanotechnol. 22, (37), 375101.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Director, Centre for Advanced Studies in Botany, University of Madras, Chennai, and CSIR- Central Leather Research Institute (CLRI), Chennai, for providing the laboratory facilities. We thank NCN-SNT, University of Madras, for providing HRTEM, EDX and SAED analysis. We thank The Head, Centre for Nanoscience and Technology, Anna University for AFM analyses. We also thank the University Grants Commission-Bioscience Research (UGC-BSR) (No.F.4-1/2006/(BSR)5-61/2007(BSR) dt 29 Jun 2012.) herbal science scheme, New Delhi.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Balashanmugam Pannerselvam or Tamil Selvi Alagumuthu.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest in performing this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pannerselvam, B., Alagumuthu, T.S., Cinnaiyan, S.K. et al. In vitro Cytotoxicity and Antibacterial Activity of Optimized Silver Nanoparticles Against Wound Infectious Bacteria and Their Morphological Studies. J Clust Sci 32, 63–76 (2021). https://doi.org/10.1007/s10876-020-01759-x

Download citation

Keywords

  • Optimized AgNPs
  • Wound infectious bacteria
  • Antibacterial activity
  • AgNPs coated fabric
  • Cytotoxicity