Skip to main content
Log in

Metal–Ligand Ratio Controlled Assembly Of Two Heterometallic CuEr Cluster Complexes: Syntheses, Structures and Magnetism

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two new heterometallic CuEr cluster complexes based on 3,5-dichlorobenzoic acid (HL) and 2,2′:6′,2″-terpyridine (TPY), [Cu(L)(TPY)][Er(L)4]·H2O (1) and [Cu(L)(TPY)][Er2(L)7] (2), have been hydrothermally prepared by controlling the metal–ligand ratios. Comparative study revealed that metal–ligand ratios affected the coordination modes of L and thus generate two distinct structures. Both complexes display as ion-pair bicomponent structures. The cationic [Cu(L)(TPY)]+ components show the similar binuclear cluster structure in two complexes, while the two anionic parts are very different. In 1, two Er(III) centers are coordinated by four bridging and four chelating L ligands to form the binuclear anionic [Er2(L)8]2− cluster. While in 2, all L ligands show the bridging modes and connect the Er(III) centers into an extended one-dimensional (1D) chain. So the overall structures of 1 and 2 are bicomponent 0D + 0D and 0D + 1D structures, respectively. Direct current magnetic susceptibility measurements were performed for two complexes and they both showed antiferromagnetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. E. P. Winpenny (1998). Chem. Soc. Rev. 27, 447.

    Article  CAS  Google Scholar 

  2. J. W. Sharples and D. Collison (2014). Coord. Chem. Rev. 260, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. K. Liu, W. Shi, and P. Cheng (2015). Coord. Chem. Rev. 289–290, 74.

    Article  CAS  Google Scholar 

  4. J. Wang, M. Feng, M. N. Akhtar, and M. L. Tong (2019). Coord. Chem. Rev. 387, 129.

    Article  CAS  Google Scholar 

  5. Y. Cui, Y. Yue, G. Qian, and B. Chen (2012). Chem. Rev. 112, 1126.

    Article  CAS  PubMed  Google Scholar 

  6. X. Yang, R. A. Jones, and S. Huang (2014). Coord. Chem. Rev. 273–274, 63.

    Article  CAS  Google Scholar 

  7. P. Cancino, L. Santibañez, P. Fuentealba, C. Olea, A. Vega, and E. Spodine (2018). Dalton Trans. 47, 13360.

    Article  CAS  PubMed  Google Scholar 

  8. S. Zhang and P. Cheng (2015). CrystEngComm 17, 4250.

    Article  CAS  Google Scholar 

  9. M. Andruh, J. P. Costes, C. Diaz, and S. Gao (2009). Inorg. Chem. 48, 3342.

    Article  CAS  PubMed  Google Scholar 

  10. S. K. Singh, M. F. Beg, and G. Rajaraman (2016). Chem. Eur. J. 22, 672.

    Article  CAS  PubMed  Google Scholar 

  11. S. J. Liu, S. D. Han, J. P. Zhao, J. Xu, and X. H. Bu (2019). Coord. Chem. Rev. 394, 39.

    CAS  Google Scholar 

  12. S. D. Han, J. P. Zhao, S. J. Liu, and X. H. Bu (2015). Coord. Chem. Rev. 289–290, 32.

    Article  CAS  Google Scholar 

  13. H. C. Hu, X. M. Kang, C. S. Cao, P. Cheng, and B. Zhao (2015). Chem. Commun. 51, 10850.

    Article  CAS  Google Scholar 

  14. J. W. Zhang, X. L. Li, X. M. Kan, H. Wu, Y. Liu, and B. Q. Liu (2017). CrystEngComm. 19, 661.

    Article  CAS  Google Scholar 

  15. S. Abednatanzi, P. G. Derakhshandeh, H. Depauw, F. X. Coudert, H. Vrielinck, P. V. D. Voort, and K. Leus (2019). Chem. Soc. Rev. 48, 2535.

    Article  CAS  PubMed  Google Scholar 

  16. J. Zhao, X. Liu, Y. Wu, D. S. Li, and Q. Zhang (2019). Coord. Chem. Rev. 391, 30.

    Article  CAS  Google Scholar 

  17. J. Pan, Y. J. Ma, S. D. Han, J. X. Hu, Y. Mu, and G. M. Wang (2019). Cryst. Growth Des. 19, 3045.

    Article  CAS  Google Scholar 

  18. T. H. Yang, A. R. Silva, and F. N. Shi (2013). Dalton Trans. 42, 13997.

    Article  CAS  PubMed  Google Scholar 

  19. X. Liu and J. R. Hamon (2019). Coord. Chem. Rev. 389, 94.

    Article  CAS  Google Scholar 

  20. M. Du, C. P. Li, C. S. Liu, and S. M. Fang (2013). Coord. Chem. Rev. 257, 1282.

    Article  CAS  Google Scholar 

  21. Y. J. Ma, S. D. Han, J. Pan, Y. Mu, J. H. Li, and G. M. Wang (2018). J. Mater. Chem. C. 6, 9341.

    Article  CAS  Google Scholar 

  22. E. C. Constable (2007). Chem. Soc. Rev. 36, 246.

    Article  CAS  PubMed  Google Scholar 

  23. A. Wild, A. Winter, F. Schlutter, and U. S. Schubert (2011). Chem. Soc. Rev. 40, 1459.

    Article  CAS  PubMed  Google Scholar 

  24. A. H. Sun, S. D. Han, J. Pan, J. H. Li, G. M. Wang, and Z. H. Wang (2017). Cryst. Growth Des. 17, 3588.

    Article  CAS  Google Scholar 

  25. B. N. Ghosh, F. Topić, P. K. Sahoo, P. Mal, J. Linnera, E. Kalenius, H. M. Tuononen, and K. Rissanen (2015). Dalton Trans. 44, 254.

    Article  CAS  PubMed  Google Scholar 

  26. B. N. Ghosh, M. Lahtinen, E. Kalenius, P. Mal, and K. Rissanen (2016). Cryst. Growth Des. 16, 2527.

    Article  CAS  Google Scholar 

  27. A. Meyer, G. Schnakenburg, R. Glaum, and O. Schiemann (2015). Inorg. Chem. 54, 8456.

    Article  CAS  PubMed  Google Scholar 

  28. H. M. Zhang, J. Yang, Y. Y. Liu, D. W. Kang, and J. F. Ma (2015). CrystEngComm 17, 3181.

    Article  CAS  Google Scholar 

  29. R. F. Higgins, B. N. Livesay, T. J. Ozumerzifon, J. P. Joyce, A. K. Rappé, and M. P. Shores (2018). Polyhedron 143, 193.

    Article  CAS  Google Scholar 

  30. F. H. Zhao, X. M. Jia, Y. C. He, L. W. Huang, X. Q. Yan, Z. L. Li, J. X. Li, R. Feng, and J. M. You (2019). Polyhedron 173, 114124.

    Article  CAS  Google Scholar 

  31. K. P. Carter, K. E. Thomas, S. J. A. Pope, R. J. Holmberg, R. J. Butcher, M. Murugesu, and C. L. Cahill (2016). Inorg. Chem. 55, 6902.

    Article  CAS  PubMed  Google Scholar 

  32. F. H. Zhao, H. Li, Y. X. Che, J. M. Zheng, V. Vieru, L. F. Chibotaru, F. Grandjean, and G. J. Long (2014). Inorg. Chem. 53, 9785.

    Article  CAS  PubMed  Google Scholar 

  33. G. M. Sheldrick SHELXL-97: Programs for X-ray Crystal Structure Refinement (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  34. C. M. Lieberman, Z. Wei, A. S. Filatov, and E. V. Dikarev (2016). Inorg. Chem. 55, 3946.

    Article  CAS  PubMed  Google Scholar 

  35. S. M. Jansze, G. Cecot, M. D. Wise, K. O. Zhurov, T. K. Ronson, C. A. Finelli, P. Pattison, E. Solari, and R. Scopelliti (2016). J. Am. Chem. Soc. 138, 2046.

    Article  CAS  PubMed  Google Scholar 

  36. E. Zelinskii, A. V. Vologzhanina, Y. Z. Voloshin, J. R. Nitschke, and K. Severin (2016). J. Am. Chem. Soc. 138, 2046.

    Article  PubMed  CAS  Google Scholar 

  37. X. C. Huang, V. Vieru, L. F. Chibotaru, W. Wernsdorfer, S. D. Jiang, and X. Y. Wang (2015). Chem. Commun. 51, 10373.

    Article  CAS  Google Scholar 

  38. F. H. Zhao, X. Zheng, and Y. X. Che (2015). Inorg. Chem. Commun. 51, 106.

    Article  CAS  Google Scholar 

  39. A. Das, K. Bhattacharya, L. K. Das, S. Giri, and A. Ghosh (2018). Dalton Trans. 47, 9385.

    Article  CAS  PubMed  Google Scholar 

  40. J. J. Kong, J. C. Zhang, Y. X. Jiang, J. X. Tao, W. Y. Wang, and X. C. Huang (2019). CrystEngComm 21, 5145.

    Article  CAS  Google Scholar 

  41. Q. Yang, G. Xie, Q. Wei, S. Chen, and S. Gao (2014). J. Solid State Chem. 215, 26.

    Article  CAS  Google Scholar 

  42. L. X. Zhong, M. Y. Liu, Y. Q. Sun, D. Z. Gao, G. Y. Zhang, Y. Y. Xu, and Y. F. Zeng (2019). J. Solid State Chem. 274, 105.

    Article  CAS  Google Scholar 

  43. F. H. Zhao, Z. L. Li, Y. C. He, L. W. Huang, X. M. Jia, X. Q. Yan, Y. F. Wang, and J. M. You (2019). J. Solid State Chem. 271, 309.

    Article  CAS  Google Scholar 

  44. F. H. Zhao, Y. C. He, C. Y. Shen, D. L. Wang, Z. L. Li, S. Y. Li, W. Y. Guo, and J. M. You (2019). Inorg. Chim. Acta. 492, 60.

    Article  CAS  Google Scholar 

  45. F. H. Zhao, W. Y. Guo, S. Y. Li, Z. L. Li, X. Q. Yan, X. M. Jia, L. W. Huang, and J. M. You (2019). J. Solid State Chem. 278, 120926.

    Article  CAS  Google Scholar 

  46. C. Hou, J. M. Shi, Y. M. Sun, W. Shi, P. Cheng, and L. D. Liua (2008). Dalton Trans. 43, 5970.

    Article  CAS  Google Scholar 

  47. Q. Yue, Q. Huang, Y. Y. Gao, and E. Q. Gao (2016). Inorg. Chim. Acta. 443, 110.

    Article  CAS  Google Scholar 

  48. B. Casanovas, M. Font-Bardía, S. Speed, M. S. E. Fallah and R. Vicente (2018) Eur. J. Inorg. Chem. 1928

  49. K. P. Carter, S. J. A. Pope, M. Kalaj, R. J. Holmberg, M. Murugesu, and C. L. Cahill (2017). Z. Anorg. Allg. Chem. 643, 1948.

    Article  CAS  Google Scholar 

  50. X. C. Huang, X. H. Zhao, D. Shao, and X. Y. Wang (2017). Dalton Trans. 46, 7232.

    Article  CAS  PubMed  Google Scholar 

  51. P. Mahapatra, N. Koizumi, T. Kanetomo, T. Ishida, and A. Ghosh (2019). New J. Chem. 43, 634.

    Article  CAS  Google Scholar 

  52. R. Calvo, R. E. Rapp, E. Chagas, R. P. Sartoris, R. Baggio, M. T. Garland, and M. Perec (2008). Inorg. Chem. 47, 10389.

    Article  CAS  PubMed  Google Scholar 

  53. S. M. Towsif Abtab, M. Chandra Majee, M. Maity, J. Titis, R. Boca, and M. Chaudhury (2014). Inorg. Chem. 53, 1295.

    Google Scholar 

  54. Y. N. Guo, G. F. Xu, P. Gamez, L. Zhao, S. Y. Lin, R. Deng, J. Tang, and H. J. Zhang (2010). J. Am. Chem. Soc. 132, 8538.

    Article  CAS  PubMed  Google Scholar 

  55. S. D. Jiang and S. X. Qin (2015). Inorg. Chem. Front. 2, 613.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21601105) and the Scientific Research Foundation of Qufu Normal University (No. 6106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Lin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, FH., Li, ZL., Yu, YH. et al. Metal–Ligand Ratio Controlled Assembly Of Two Heterometallic CuEr Cluster Complexes: Syntheses, Structures and Magnetism. J Clust Sci 32, 45–54 (2021). https://doi.org/10.1007/s10876-019-01757-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01757-8

Keywords

Navigation