Skip to main content
Log in

Solar Driven CO2 Hydrogenation on Ti-Doped Silicon Nanocages

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Hydrogenation of carbon dioxide (CO2) to produce fuels and value-added chemicals is a critical reaction to solve both energy and environment issues. Developing efficient catalysts composed of earth-abundant, cost-effective and eco-friendly elements is highly desired but remains challenging. Here, we exploit titanium-doped silicon cage nanoclusters (TiSin, n = 12–16) for CO2 hydrogenation. Our first-principles calculations show that the activity and product selectivity of TiSin clusters exhibit remarkable size-dependences, and they can also absorb a large portion of sun light from visible to ultraviolet regimes to drive the catalysis. Their activity origins from the unsaturated electronic states on the silicon cage, mediated by the strong covalent bonding between Si and Ti atoms. More importantly, we establish a relationship between binding capability of TiSin clusters and the p orbital center of silicon cage, which provide general guidelines for atomically precise design of not only silicon-based clusters but also other non-metal catalysts for highly active and selective CO2 conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. S. Sen, D. Liu, and G. T. R. Palmore (2014). ACS catal.4, 3091.

    Article  CAS  Google Scholar 

  2. Y. Li, F. Cui, M. B. Ross, D. Kim, Y. Sun, and P. Yang (2017). Nano Lett.17, 1312.

    Article  CAS  PubMed  Google Scholar 

  3. M. Ma, K. Djanashvili, and W. A. Smith (2016). Angew. Chem. Int. Ed.55, 6680.

    Article  CAS  Google Scholar 

  4. J. Christophe, T. Doneux, and C. Buess-Herman (2012). Electrocatalysis3, 139.

    Article  CAS  Google Scholar 

  5. D. Kim, J. Resasco, Y. Yu, A. M. Asiri, and P. Yang (2014). Nat. Commun.5, 4948.

    Article  CAS  PubMed  Google Scholar 

  6. S. Rasul, D. H. Anjum, A. Jedidi, Y. Minenkov, L. Cavallo, and K. Takanabe (2015). Angew. Chem. Int. Ed.54, 2146.

    Article  CAS  Google Scholar 

  7. K. Stangeland, D. Kalai, H. Li, and Z. Yu (2017). Energy Procedia105, 2022.

    Article  CAS  Google Scholar 

  8. Z. Bian, S. Das, M. H. Wai, P. Hongmanorom, and S. Kawi (2017). ChemPhysChem18, 3117.

    Article  CAS  PubMed  Google Scholar 

  9. D. Preti, C. Resta, S. Squarcialupi, and G. Fachinetti (2011). Angew. Chem. Int. Ed.50, 12551.

    Article  CAS  Google Scholar 

  10. X. M. Liu, G. Q. Lu, Z. F. Yan, and J. Beltramini (2003). Ind. Eng. Chem. Res.42, 6518.

    Article  CAS  Google Scholar 

  11. G. Schmid, M. Bäumle, M. Geerkens, I. Heim, C. Osemann, and T. Sawitowski (1999). Chem. Soc. Rev.28, 179.

    Article  CAS  Google Scholar 

  12. T. O. Strandberg, C. M. Canali, and A. H. MacDonald (2007). Nat. Mater.6, 648.

    Article  CAS  PubMed  Google Scholar 

  13. C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, and H. I. Yeh (2009). ACS Nano3, 395.

    Article  CAS  PubMed  Google Scholar 

  14. N. Austin, S. Zhao, J. R. McKone, R. Jin, and G. Mpourmpakis (2018). Catal. Sci. Technol.8, 3795.

    Article  CAS  Google Scholar 

  15. L. Wang, X. Chai, X. Cheng, and Y. Zhu (2018). ChemistrySelect3, 6165.

    Article  CAS  Google Scholar 

  16. C. Liu, B. Yang, E. Tyo, S. Seifert, J. DeBartolo, B. von Issendorff, P. Zapol, S. Vajda, and L. A. Curtiss (2015). J. Am. Chem. Soc.137, 8676.

    Article  CAS  PubMed  Google Scholar 

  17. T. Billo, F. Y. Fu, P. Raghunath, I. Shown, W. F. Chen, H. T. Lien, T. H. Shen, J. F. Lee, T. S. Chan, K. Y. Huang, C. I. Wu, M. C. Lin, J. S. Hwang, C. H. Lee, L. C. Chen, and K. H. Chen (2018). Small14, 1702928.

    Article  CAS  Google Scholar 

  18. Y. Liu, X. Chai, X. Cai, M. Chen, R. Jin, W. Ding, and Y. Zhu (2018). Angew. Chem. Int. Ed.57, 9775.

    Article  CAS  Google Scholar 

  19. C. Liu, H. He, P. Zapol, and L. A. Curtiss (2014). Phys. Chem. Chem. Phys.16, 26584.

    Article  CAS  PubMed  Google Scholar 

  20. P. Liu, Y. Choi, Y. Yang, and M. G. White (2009). J. Phys. Chem. A114, 3888.

    Article  CAS  Google Scholar 

  21. C. Liu and P. Liu (2015). ACS Catal.5, 1004.

    Article  CAS  Google Scholar 

  22. H. T. Zhang, C. Liu, P. Liu, and Y. H. Hu (2019). J. Chem. Phys.151, 024304.

    Article  PubMed  CAS  Google Scholar 

  23. K. M. Ho, A. A. Shvartsburg, B. Pan, Z. Y. Lu, C. Z. Wang, J. G. Wacker, J. L. Fye, and M. F. Jarrold (1998). Nature392, 582.

    Article  CAS  Google Scholar 

  24. U. Röthlisberger, W. Andreoni, and M. Parrinello (1994). Phys. Rev. Lett.72, 665.

    Article  PubMed  Google Scholar 

  25. A. D. Zdetsis (2007). Phys. Rev. B76, 075402.

    Article  CAS  Google Scholar 

  26. J. Zhao, L. Ma, D. Tian, and R. Xie (2008). J. Comput. Theor. Nanos.5, 7.

    CAS  Google Scholar 

  27. V. Kumar and Y. Kawazoe (2001). Phys. Rev. Lett.87, 045503.

    Article  CAS  PubMed  Google Scholar 

  28. V. Kumar and Y. Kawazoe (2003). Appl. Phys. Lett.83, 2677.

    Article  CAS  Google Scholar 

  29. H. Kawamura, V. Kumar, and Y. Kawazoe (2005). Phys. Rev. B71, 075423.

    Article  CAS  Google Scholar 

  30. H. Kawamura, V. Kumar, and Y. Kawazoe (2004). Phys. Rev. B70, 245433.

    Article  CAS  Google Scholar 

  31. V. Kumar and Y. Kawazoe (2002). Phys. Rev. B65, 073404.

    Article  CAS  Google Scholar 

  32. H. Hiura, T. Miyazaki, and T. Kanayama (2001). Phys. Rev. Lett.86, 1733.

    Article  CAS  PubMed  Google Scholar 

  33. M. Ohara, K. Koyasu, A. Nakajima, and K. Kaya (2003). Chem. Phys. Lett.371, 490.

    Article  CAS  Google Scholar 

  34. M. Nakaya, T. Iwasa, H. Tsunoyama, T. Eguchi, and A. Nakajima (2014). Nanoscale6, 14702.

    Article  CAS  PubMed  Google Scholar 

  35. K. Koyasu, M. Akutsu, M. Mitsui, and A. Nakajima (2005). J. Am. Chem. Soc.127, 4998.

    Article  CAS  PubMed  Google Scholar 

  36. H. Tsunoyama, M. Shibuta, M. Nakaya, T. Eguchi, and A. Nakajima (2018). Acc. Chem. Res.51, 1735.

    Article  CAS  PubMed  Google Scholar 

  37. M. Shibuta, T. Niikura, T. Kamoshida, H. Tsunoyama, and A. Nakajima (2018). Phys. Chem. Chem. Phys.20, 26273.

    Article  CAS  PubMed  Google Scholar 

  38. M. Shibuta, T. Kamoshida, T. Ohta, H. Tsunoyama, and A. Nakajima (2018). Commun. Chem.1, 50.

    Article  CAS  Google Scholar 

  39. S. Zhou, X. Yang, W. Pei, J. Zhao, and A. Du (2019). J. Phys. Chem. C123, 9973.

    Article  CAS  Google Scholar 

  40. J. Zhao, R. Shi, L. Sai, X. Huang, and Y. Su (2016). Mol. Simulat.42, 809.

    Article  CAS  Google Scholar 

  41. B. Delley (2000). J. Chem. Phys.113, 7756.

    Article  CAS  Google Scholar 

  42. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett.77, 3865.

    Article  CAS  PubMed  Google Scholar 

  43. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg (2010). J. Chem. Phys.132, 154104.

    Article  PubMed  CAS  Google Scholar 

  44. G. Kresse and J. Furthmüller (1996). Phys. Rev. B54, 11169.

    Article  CAS  Google Scholar 

  45. G. Kresse and D. Joubert (1999). Phys. Rev. B59, 1758.

    Article  CAS  Google Scholar 

  46. X. Wu, X. Liang, Q. Du, J. Zhao, M. Chen, M. Lin, J. Wang, G. Yin, L. Ma, and R. B. King (2018). J. Phys. Condens. Matter30, 354002.

    Article  PubMed  Google Scholar 

  47. X. Wu, S. Zhou, X. Huang, M. Chen, R. Bruce, and J. Zhao (2018). J. Comput. Chem.39, 2268.

    Article  CAS  PubMed  Google Scholar 

  48. C. Kittel Introductions to solid states physics (Wiley, New York, 2005).

    Google Scholar 

  49. A. E. Reed, R. B. Weinstock, and F. Weinhold (1985). J. Chem. Phys.83, 735.

    Article  CAS  Google Scholar 

  50. M. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson (2009). Inc., Wallingford, CT200, 28.

  51. M. W. Chase (1996). J. Phys. Chem. Ref. Data25, 551.

    Article  CAS  Google Scholar 

  52. G. Henkelman, B. P. Uberuaga, and H. Jónsson (2000). J. Chem. Phys.113, 9901.

    Article  CAS  Google Scholar 

  53. I. Mayer (1983). Chem. Phys. Lett.97, 270.

    Article  CAS  Google Scholar 

  54. R. S. Mulliken (1955). J. Chem. Phys.23, 1833.

    Article  CAS  Google Scholar 

  55. M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, and B. L. Kniep (2012). Science336, 893.

    Article  CAS  PubMed  Google Scholar 

  56. Y. Yang, J. Evans, J. A. Rodriguez, M. G. White, and P. Liu (2010). Phys. Chem. Chem. Phys.12, 9909.

    Article  CAS  PubMed  Google Scholar 

  57. Q. Kang, T. Wang, P. Li, L. Liu, K. Chang, M. Li, and J. Ye (2015). Angew. Chem. Int. Ed.54, 841.

    Article  CAS  Google Scholar 

  58. W. Tu, Y. Zhou, and Z. Zou (2014). Adv. Mater.26, 4607.

    Article  CAS  PubMed  Google Scholar 

  59. J. Ren, S. Ouyang, H. Xu, X. Meng, T. Wang, D. Wang, and J. Ye (2017). Adv. Energy Mater7, 1601657.

    Article  CAS  Google Scholar 

  60. W. Pei, S. Zhou, Y. Bai, and J. Zhao (2018). Carbon133, 260.

    Article  CAS  Google Scholar 

  61. S. Zhou, X. Yang, W. Pei, N. Liu, and J. Zhao (2018). Nanoscale10, 10876.

    Article  CAS  PubMed  Google Scholar 

  62. S. Zhou, W. Pei, J. Zhao, and A. Du (2019). Nanoscale11, 7734.

    Article  CAS  PubMed  Google Scholar 

  63. B. Hammer and J. K. Nørskov (2000). Adv. Catal.45, 71.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (11974068, 11574040), the Fundamental Research Funds for the Central Universities of China (DUT17LAB19), and the Supercomputing Center of Dalian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, W., Zhou, S. & Bai, Y. Solar Driven CO2 Hydrogenation on Ti-Doped Silicon Nanocages. J Clust Sci 31, 627–635 (2020). https://doi.org/10.1007/s10876-019-01743-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01743-0

Keyword

Navigation