Comparative Studies on Functionalization of Bacterial Magnetic Nanoparticles for Drug Delivery

Abstract

The study demonstrates the use of bacterial magnetic nanoparticles (BMNPs) as a drug carrier for the anticancer drug. BMNPs extracted from Magnetospirillum gryphiswaldense MSR-1, characterized using microscopic and spectroscopic methods. Drug conjugates were developed by direct binding of crizotinib with lipid membrane of BMNPs (CM) and also by using crosslinkers such as glutaraldehyde (CMG) and 3-aminopropyltriethoxysilane (APTES) (CMA). The developed conjugates were characterized using microscopic and spectroscopic methods. Drug loading capacity was 670 µg/ml for CM and 162.08 µg/ml and 243.15 µg/ml for CMG and CMA respectively. The drug loading efficiency of drug conjugates CM, CMG and CMA were found to be 67%, 16.2% and 24.3%. The drug release assay revealed slow and stable discharge of crizotinib from CM conjugate (8.2%) compared to CMG (88.33%) and CMA (58.46%) at 48 h. The cytotoxicity of CM was found to be high in comparison with BMNPs, CMG, CMA and crizotinib as tested on cell lines: A549, MCF-7 and HeLa. Our study establishes that the direct attachment of crizotinib with BMNPs shows better coupling with higher loading efficiency and long-term release compared to use of linkers. Further studies are needed to validate the results using animal models and also for targeted drug delivery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

BMPs:

Bacterial magnetic nanoparticles

MTB:

Magnetotactic bacteria

DSMZ:

Deutsche Sammlung von Mikroorganismen und Zellkulturen

MSGM:

Magnetospirillum growth medium

FTIR:

Fourier-transform infrared spectroscopy

HRTEM:

High-resolution transmission electron microscopy

XRD:

X-ray diffraction

TGA:

Thermogravimetric analysis

AFM:

Atomic force microscopy

CM:

Crizotinib-magnetosome complex

CMG:

Crizotinib-magnetosome complex prepared via glutaraldehyde

CMA:

Crizotinib-magnetosome complex prepared via APTES

References

  1. 1.

    M. H. Mashhadizadeh and M. Amoli-Diva (2012). J. Nanomed. Nanotechol. 3, (4), 139.

    CAS  Article  Google Scholar 

  2. 2.

    Jian-Bo Sun, Jin-Hong Duan, Shun-Ling Dai, Jun Ren, Lin Guo, Wei Jiang, and Ying Li (2008). Biotechnol. Bioeng. 101, (6), 1313–1320.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    E. Alphandery, S. Faure, O. Seksek, F. Guyot, and I. Chebbi (2011). ACS Nano. 5, (8), 6279–6296.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    S. A. Wahajuddin (2012). Int. J. Nanomed. 7, 3445.

    CAS  Article  Google Scholar 

  5. 5.

    T. Revathy, M. A. Jayasri, and K. Suthindhiran (2017). 3 Biotech 7, (2), 126.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    J. B. Sun, J. H. Duan, S. L. Dai, J. Ren, Y. D. Zhang, J. S. Tian, and Y. Li (2007). Cancer Lett. 258, (1), 109–117.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    B. M. Moskowitz, R. B. Frankel, P. J. Flanders, R. P. Blakemore, and B. B. Schwartz (1988). J. Magn. Magn. Mater. 73, (3), 273–288.

    Article  Google Scholar 

  8. 8.

    D. A. Bazylinski, A. J. Garratt-Reed, and R. B. Frankel (1994). Microsc. Res. Tech. 27, (5), 389–401.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    D. A. Bazylinski and R. B. Frankel (2004). Nat. Rev. Microbiol. 2, (3), 217–230.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Y. A. Gorby, T. J. Beveridge, and R. P. Blakemore (1988). J. Bacteriol. 170, 834–841.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    N. Nakamura, K. Hashimoto, and T. Matsunaga (1991). Anal. Chem. 63, (3), 268–272.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    K. Grünberg, et al. (2004). Appl. Environ. Microbiol. 70, (2), 1040–1050.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    T. Matsunaga, F. Ueki, K. Obata, H. Tajima, T. Tanaka, H. Takeyama, Y. Goda, and S. Fujimoto (2003). Anal. Chim. Acta 475, 75–83.

    CAS  Article  Google Scholar 

  14. 14.

    L. Yan, S. Zhang, P. Chen, H. Liu, H. Yin, and H. Li (2012). Microbiol. Res. 167, (9), 507–519.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    H. Takeyama, A. Yamazawa, C. Nakamura, and T. Matsunaga (1995). Biotechnol. Tech. 9, (5), 355–360.

    CAS  Article  Google Scholar 

  16. 16.

    B. Yoza, M. Matsumoto, and T. Matsunaga (2002). J. Biotechnol. 94, (3), 217–224.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    J. Xie, K. Chen, and X. Chen (2009). Nano Res. 2, (4), 261–278.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    A. Sahu, K. Prabhash, V. Noronha, A. Joshi, and S. Desai (2013). South Asian J. Cancer 2, (2), 91.

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Z. M. Jiang, S. P. Dai, Y. Q. Xu, T. Li, J. Xie, C. Li, and Z. H. Zhang (2015). Med. Oncol. 32, (7), 193.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    R. C. Doebele, A. B. Pilling, D. L. Aisner, T. G. Kutateladze, A. T. Le, A. J. Weickhardt, K. L. Kondo, D. J. Linderman, L. E. Heasley, W. A. Franklin, and M. Varella-Garcia (2012). Clin. Cancer Res. 18, (5), 1472–1482.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    R. Katayama, A. T. Shaw, T. M. Khan, M. Mino-Kenudson, B. J. Solomon, B. Halmos, N. A. Jessop, J. C. Wain, A. T. Yeo, C. Benes, and L. Drew (2012). Sci. Transl. Med. 4, (120), 1217.

    Article  CAS  Google Scholar 

  22. 22.

    R. D. Blakemore, D. Maratea, and R. S. Wolfe (1979). J. Bacteriol. 140, 720–729.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    E. Alphandéry, F. Guyot, and I. Chebbi (2012). Int. J. Pharm. 434, 444–452.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    M. Yamaura, R. L. Camilo, L. C. Sampaio, M. A. Macedo, M. Nakamura, and H. E. Toma (2004). J. Magn. Magn. Mater. 279, (2), 210–217.

    CAS  Article  Google Scholar 

  25. 25.

    K. Can, M. Ozmen, and M. Ersoz (2009). Colloid Surf. B Biointerfaces 71, (1), 154–159.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    P. Utreja, S. Jain, and A. K. Tiwary (2012). Drug Deliv. 19, 11–20.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    L. Han, S. Li, Y. Yang, F. Zhao, J. Huang, and J. Chang (2007). J. Magn. Magn. Mater. 313, (1), 236–242.

    CAS  Article  Google Scholar 

  28. 28.

    Q. Y. Lai, J. Z. Lu, and X. Y. Ji (2000). Mater. Chem. Phys. 66, (1), 6–9.

    Article  Google Scholar 

  29. 29.

    A. Bharde, et al. (2005). J. Am. Chem. Soc. 127, (26), 9326–9327.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    J. Lu, et al. (2007). Small 3, (8), 1341–1346.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    L. Guo, J. Huang, X. Zhang, Y. Li, and L. Zheng (2008). J. Mater. Chem. 18, (48), 5993–5997.

    CAS  Article  Google Scholar 

  32. 32.

    L. Guo, J. Huang, and L.-M. Zheng (2010). J. Nanosci. Nanotechnol. 10, (10), 6514–6565.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    L. Guo, J. Huang, and L.-M. Zheng (2011). Nanotechnology 22, (17), 175102.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    J. Baharara, et al. (2016). Avicenna J. Med. Biotechnol. 8, (2), 75.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    L. Krishnasamy, et al. (2014). Int. J. Pharm. Pharm. Sci. 6, 245–248.

    CAS  Google Scholar 

  36. 36.

    S. Shukla, et al. (2015). Toxicol. Rep. 2, 27–39.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by VIT University. The authors thank the management for providing the facilities for the research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Suthindhiran.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raguraman, V., Suthindhiran, K. Comparative Studies on Functionalization of Bacterial Magnetic Nanoparticles for Drug Delivery. J Clust Sci 31, 1275–1284 (2020). https://doi.org/10.1007/s10876-019-01737-y

Download citation

Keywords

  • BMNPs
  • Crizotinib
  • BMNPs-drug conjugates
  • Drug delivery
  • Glutaraldehyde
  • APTES