Structural and Electronic Properties of Small Stoichiometric (Li2O2)n Clusters and Relevance to Li–O2 Batteries

Abstract

Stoichiometric (Li2O2)n clusters (n = 1–6) were systematically studied by density functional theory calculations with hybrid B3LYP functional. The most stable structures of these clusters are triplet except for the Li2O2 monomer. In the Li2O2 monomer, the closed shell singlet is strongly favored. There are superoxide-like characteristics in terms of bond lengths and spin in the stoichiometric peroxide lithium clusters, which may have implications for the formation and decomposition of peroxide lithium in Li–O2 batteries. Furthermore, the growth process of the lowest energy structures of (Li2O2)n clusters is “ring-like” (n = 2) → “rectangle-like” (n = 3,4) → “Y-like” (n = 5) → “disc-like” (n = 6) feature, this growth pattern is in good agreement with the experimental observation at the initial phase of discharge in the Li–O2 battery. In addition, the values of energy gaps for the (Li2O2)n clusters are much smaller than the band gap of bulk phase, and thus the (Li2O2)n cluster can enhance the electron conductivity in the peroxide lithium. The frontier molecular orbitals analysis indicates that there are π* antibonding on the surface of (Li2O2)n clusters, making their structures more stable. Finally, the PES of (Li2O2)n clusters have been simulated, we hope that our simulated PES can be compared with future experimental data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon (2012). Nat. Mater.11, 19.

    CAS  Article  Google Scholar 

  2. 2.

    J. Lu, L. Li, J. B. Park, Y. K. Sun, F. Wu, and K. Amine (2014). Chem. Rev.114, 5611.

    CAS  Article  Google Scholar 

  3. 3.

    M. Armand and J. M. Tarascon (2008). Nature451, 652.

    CAS  Google Scholar 

  4. 4.

    K. M. Abraham and Z. Jiang (1996). J. Electrochem. Soc.143, 1.

    CAS  Article  Google Scholar 

  5. 5.

    Z. Lyu, Y. Zhou, W. Dai, et al. (2017). Chem. Soc. Rev.46, 6046.

    CAS  Article  Google Scholar 

  6. 6.

    J. R. Harding, C. V. Amanchukwu, P. T. Hammond, and Y. Shao-Horn (2015). J. Phys. Chem. C119, 6947.

    CAS  Article  Google Scholar 

  7. 7.

    H. G. Jung, H. S. Kim, J. B. Park, et al. (2012). Nano Lett.12, 4333.

    CAS  Article  Google Scholar 

  8. 8.

    D. Zhai, H. H. Wang, J. Yang, et al. (2013). J. Am. Chem. Soc.135, 15364.

    CAS  Article  Google Scholar 

  9. 9.

    B. D. Adams, C. Radtke, R. Black, M. L. Trudeau, K. Zaghib, and L. F. Nazar (2013). Energy Environ. Sci.6, 1772.

    CAS  Article  Google Scholar 

  10. 10.

    C. Xia, M. Waletzko, L. Chen, K. Peppler, P. J. Klar, and J. Janek (2014). ACS Appl. Mater. Interfaces6, 12083.

    CAS  Article  Google Scholar 

  11. 11.

    K. C. Lau, R. S. Assary, P. Redfern, J. Greeley, and L. A. Curtiss (2012). J. Phys. Chem. C116, 23890.

    CAS  Article  Google Scholar 

  12. 12.

    J. Lv, Y. Wang, L. Zhu, and Y. Ma (2012). J. Chem. Phys.137, 084104.

    Article  Google Scholar 

  13. 13.

    Y. Wang, J. Lv, L. Zhu, and Y. Ma (2012). Comput. Phys. Commun.183, 2063.

    CAS  Article  Google Scholar 

  14. 14.

    Y. Wang, J. Lv, L. Zhu, and Y. Ma (2010). Phys. Rev. B82, 094116.

    Article  Google Scholar 

  15. 15.

    W. Sun, X. Xia, C. Lu, X. Kuang, and A. Hermann (2018). Phys. Chem. Chem. Phys.20, 23740.

    CAS  Article  Google Scholar 

  16. 16.

    J. Lv, Y. Wang, L. Zhang, H. Lin, J. Zhao, and Y. Ma (2015). Nanoscale7, 10482.

    CAS  Article  Google Scholar 

  17. 17.

    T. Truong and N. Minh (2015). Nanoscale7, 3316.

    Article  Google Scholar 

  18. 18.

    M. Ju, J. Lv, X. Y. Kuang, et al. (2015). Rsc Adv.5, 6560.

    CAS  Article  Google Scholar 

  19. 19.

    S. F. Li, X. J. Zhao, X. S. Xu, Y. F. Gao, and Z. Zhang (2013). Phys. Rev. Lett.111, 115501.

    CAS  Article  Google Scholar 

  20. 20.

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, (2013). Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT.

  21. 21.

    A. D. Becke (1993). J. Chem. Phys.98, 5648.

    CAS  Article  Google Scholar 

  22. 22.

    C. Lee, W. Yang, and R. G. Parr (1988). Physical Review B37, 785.

    CAS  Article  Google Scholar 

  23. 23.

    M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople, and M. S. Gordon (1982). J. Chem. Phys.77, 3654.

    CAS  Article  Google Scholar 

  24. 24.

    H. W. Wang, X. L. Lei, Z. F. Tian, and C. Y. Ouyang (2017). Solid State Ionics303, 24.

    CAS  Article  Google Scholar 

  25. 25.

    J. S. Hummelshoj, J. Blomqvist, S. Datta, et al. (2010). J. Chem. Phys.132, 071101.

    CAS  Article  Google Scholar 

  26. 26.

    M. D. Radin, J. F. Rodriguez, F. Tian, and D. J. Siegel (2012). J. Am. Chem. Soc.134, 1093.

    CAS  Article  Google Scholar 

  27. 27.

    L. Shi, A. Xu, and T. S. Zhao (2015). Phys. Chem. Chem. Phys.17, 29859.

    CAS  Article  Google Scholar 

  28. 28.

    G. Yang, Y. Wang, and Y. Ma (2014). J. Phys. Chem. Lett.5, 2516.

    CAS  Article  Google Scholar 

  29. 29.

    S. Kang, Y. Mo, S. P. Ong, and G. Ceder (2013). Chem. Mater.25, 3328.

    CAS  Article  Google Scholar 

  30. 30.

    S. Ganapathy, B. D. Adams, G. Stenou, et al. (2014). J. Am. Chem. Soc.136, 16335.

    CAS  Article  Google Scholar 

  31. 31.

    X. L. Lei (2011). J. Clust. Sci.22, 159.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation of China (Grant No. 11764019) for financial support of the current work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xueling Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gan, Z., Lei, X., Hou, B. et al. Structural and Electronic Properties of Small Stoichiometric (Li2O2)n Clusters and Relevance to Li–O2 Batteries. J Clust Sci 31, 643–649 (2020). https://doi.org/10.1007/s10876-019-01736-z

Download citation

Keywords

  • (Li2O2)n cluster
  • Ground state structure
  • Electronic properties
  • Li–O2 batteries, DFT calculations