Emerging Antineoplastic Gold Nanomaterials for Cervical Cancer Therapeutics: A Systematic Review


Cervical cancer, a malignant neoplasm arising from cervix cells, remains one of the leading global cause of women cancer-related deaths. The present study was aimed to conduct a comprehensive systematic review to show the anticancer activity of biological mediated gold nanoparticles (AuNPs) against cervical cancer cells. To identify the articles, a systematic search was performed through the electronic databases including Web of Science, PubMed, Scopus, Science Direct, ProQuest, Embase, and Cochrane for the articles published up to 31 August 2019. Thirty-three articles met our eligibility criteria and were entered into the present systematic review. Our finding showed that twenty-eight articles stated the biogenic AuNPs-induced cytotoxicity against cervical cancer cells, whereas five reports said no cytotoxicity. In this study, the proposed molecular mechanisms of biogenic AuNPs-induced cytotoxicity were discussed. In total, the studies suggested the induction of apoptosis and overgeneration of intracellular reactive oxygen species (ROS) through the AuNPs-treated cervical cells. The information of this study may help the researchers for translation laboratory setting studies to clinical researches. Future investigations are required to represent the efficacy of biogenic AuNPs through in vivo models alone or combination with other anticancer drugs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah (2018). Beilstein J. Nanotechnol. 9, 1050.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    M. Ferrari (2005). Nat. Rev. Cancer. 5, 161.

    CAS  PubMed  Google Scholar 

  3. 3.

    P. Boomi, G. P. Poorani, S. Palanisamy, S. Selvam, G. Ramanathan, S. Ravikumar, H. Barabadi, H. G. Prabu, J. Jeyakanthan, and M. Saravanan (2019). J. Clust. Sci. 30, 715.

    CAS  Google Scholar 

  4. 4.

    J. Xu, X. Zhou, Y. Li, and Y. Tian (2017). Curr. Drug Metab. 18, 266.

    CAS  PubMed  Google Scholar 

  5. 5.

    F. Ordikhani, M. Erdem Arslan, R. Marcelo, I. Sahin, P. Grigsby, J. K. Schwarz, and A. K. Azab (2016). Pharmaceutics. 8, 23.

    PubMed Central  Google Scholar 

  6. 6.

    H. Barabadi, F. Kobarfard, and H. Vahidi (2018). Iran J. Pharm Res. 17, 87.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    H. Barabadi, S. Honary, P. Ebrahimi, A. Alizadeh, F. Naghibi, and M. Saravanan (2019). Inorg Nano-Met Chem. 49, 33.

    CAS  Google Scholar 

  8. 8.

    Q. Abbas, M. Saleem, A. R. Phull, M. Rafiq, M. Hassan, K.-H. Lee, and S.-Y. Seo (2017). Iran J. Pharm Res. 16, 760.

    CAS  Google Scholar 

  9. 9.

    N. Karimi, A. Chardoli, and A. Fattahi (2017). Iran J. Pharm Res. 16, 1167.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Z. Rezvani Amin, Z. Khashyarmanesh, B. S. Fazly Bazzaz, and Noghabi Z. Sabeti (2019). Iran J. Pharm. Res. 18, 210.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    S. Salari, S. Esmaeilzadeh Bahabadi, A. Samzadeh-Kermani, and F. Yousefzaei (2019). Iran J. Pharm Res. 18, 430.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    L. Qian, W. Su, Y. Wang, M. Dang, W. Zhang, and C. Wang (2019). Artif. Cells Nanomed. Biotechnol. 47, 1173.

    CAS  PubMed  Google Scholar 

  13. 13.

    B. Patra, R. Gautam, E. Priyadarsini, P. Rajamani, S. N. Pradhan, M. Saravanan, and R. Meena (2019). J. Clust. Sci.. https://doi.org/10.1007/s10876-019-01625-5.

    Article  Google Scholar 

  14. 14.

    M. P. Patil, E. Bayaraa, P. Subedi, L. L. A. Piad, N. H. Tarte, and G. D. Kim (2019). J. Drug Deliv. Sci. Technol. 51, 83.

    CAS  Google Scholar 

  15. 15.

    R. Dharmatti, C. Phadke, A. Mewada, M. Thakur, S. Pandey, and M. Sharon (2014). Mater. Sci. Eng. C 44, 92.

    CAS  Google Scholar 

  16. 16.

    P. Sharma, P. J. Babu, and U. Bora (2012). Micro Nano Lett. 7, 1296.

    CAS  Google Scholar 

  17. 17.

    R. K. Das, P. Sharma, P. Nahar, and U. Bora (2011). Mater. Lett. 65, 610.

    CAS  Google Scholar 

  18. 18.

    P. J. Babu, P. Sharma, M. C. Kalita, and U. Bora (2011). Front Mater. Sci. 5, 379.

    Google Scholar 

  19. 19.

    S. Gupta and M. K. Gupta (2017). Nano Rev. Exp. 8, 1335567.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    P. Olusola, H. N. Banerjee, J. V. Philley, and S. Dasgupta (2019). Cells. 8, 622.

    CAS  PubMed Central  Google Scholar 

  21. 21.

    T. Sarenac and M. Mikov (2019). Front Pharmacol. 10, 484.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman (2009). PLoS Med. 6, e1000097.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    H. A. Ghramh, K. A. Khan, E. H. Ibrahim, and W. N. Setzer (2019). Nanomaterials. 9, 765.

    CAS  PubMed Central  Google Scholar 

  24. 24.

    E. E. Elemike, D. C. Onwudiwe, N. Nundkumar, M. Singh, and O. Iyekowa (2019). Mater. Lett. 243, 148.

    CAS  Google Scholar 

  25. 25.

    H. Singh, J. Du, P. Singh, and T. H. Yi (2018). Artif. Cells Nanomed. Biotechnol. 46, 1163.

    CAS  PubMed  Google Scholar 

  26. 26.

    M. Camas, A. Sazak Camas, and K. Kyeremeh (2018). Indian J. Microbiol. 58, 214.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    E.-Y. Ahn, S. J. Hwang, M.-J. Choi, S. Cho, H.-J. Lee, and Y. Park (2018). Artif. Cells Nanomed. Biotechnol. 46, 1127.

    CAS  PubMed  Google Scholar 

  28. 28.

    E. Y. Ahn, Y. J. Lee, S. Y. Choi, A. R. Im, Y. S. Kim, and Y. Park (2018). Artif. Cells Nanomed. Biotechnol. 46, 1108.

    CAS  PubMed  Google Scholar 

  29. 29.

    S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, N. Gobi, S. Ravichandran, S. Karthi, B. Ashokkumar, and N. Sivakumar (2017). Microb. Pathog. 110, 140.

    CAS  PubMed  Google Scholar 

  30. 30.

    P. Seetharaman, R. Chandrasekaran, S. Gnanasekar, I. Mani, and S. Sivaperumal (2017). Biocatal. Agric. Biotechnol. 11, 75.

    Google Scholar 

  31. 31.

    A. Rajan, A. R. Rajan, and D. Philip (2017). OpenNano. 2, 1.

    Google Scholar 

  32. 32.

    P. P. Dutta, M. Bordoloi, K. Gogoi, S. Roy, B. Narzary, D. R. Bhattacharyya, P. K. Mohapatra, and B. Mazumder (2017). Biomed. Pharmacother. 91, 567.

    CAS  PubMed  Google Scholar 

  33. 33.

    B. Kumar, K. Smita, L. Cumbal, J. Camacho, E. Hernández-Gallegos, Chávez-López M. de Guadalupe, M. Grijalva, and K. Andrade (2016). Mater. Sci Eng. C. 62, 725.

    CAS  Google Scholar 

  34. 34.

    A. A. Kajani, A. K. Bordbar, S. H. Zarkesh Esfahani, and A. Razmjou (2016). RSC Adv. 6, 63973.

    CAS  Google Scholar 

  35. 35.

    N. Dorosti and F. Jamshidi (2016). J. Appl. Biomed. 14, 235.

    Google Scholar 

  36. 36.

    P. Balashanmugam, P. Durai, M. D. Balakumaran, and P. T. Kalaichelvan (2016). J. Photochem. Photobiol. B. 165, 163.

    CAS  PubMed  Google Scholar 

  37. 37.

    J. Baharara, T. Ramezani, A. Divsalar, M. Mousavi, and A. Seyedarabi (2016). Avicenna J. Med. Biotechnol. 8, 75.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Z. Ajdari, H. Rahman, K. Shameli, R. Abdullah, M. Abd Ghani, S. Yeap, S. Abbasiliasi, D. Ajdari, and A. Ariff (2016). Molecules. 21, 123.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    S. Yallappa, J. Manjanna, B. L. Dhananjaya, U. Vishwanatha, B. Ravishankar, and H. Gururaj (2015). J. Mater. Sci.: Mater. Med. 26.

  40. 40.

    A. Rajan, V. Vilas, and D. Philip (2015). J. Mol. Liq. 212, 331.

    CAS  Google Scholar 

  41. 41.

    P. Manivasagan and J. Oh (2015). Mar Drugs. 13, 6818.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    P. Manivasagan, M. S. Alam, K. H. Kang, M. Kwak, and S. K. Kim (2015). Bioprocess Biosyst Eng. 38, 1167.

    CAS  PubMed  Google Scholar 

  43. 43.

    S. Lokina, R. Suresh, K. Giribabu, A. Stephen, R. L. Sundaram, and V. Narayanan (2014). Spectrochim. Acta Part A 129, 484.

    CAS  Google Scholar 

  44. 44.

    M. Jeyaraj, R. Arun, G. Sathishkumar, D. MubarakAli, M. Rajesh, G. Sivanandhan, G. Kapildev, M. Manickavasagam, N. Thajuddin, and A. Ganapathi (2014). Mater. Res. Bull. 52, 15.

    CAS  Google Scholar 

  45. 45.

    S. Geetha, J. SathakkathulZariya, R. Aarthi, and H. Blessie (2014). J. Chem. Pharm. Sci. Special Issue 4, 172.

    Google Scholar 

  46. 46.

    T. S. Dhas, V. G. Kumar, V. Karthick, K. Govindaraju, and Narayana T. Shankara (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 133, 102.

    CAS  PubMed  Google Scholar 

  47. 47.

    M. Anand, V. Selvaraj, M. Alagar, and J. Ranjitha (2014). Asian J. Pharm. Clin. Res. 7, 136.

    Google Scholar 

  48. 48.

    Y. W. Lin, Y. C. Chen, C. W. Wang, W. T. Chen, C. M. Liu, C. Y. Chen, and H. T. Chang (2013). J. Nanosci. Nanotechnol. 13, 6566.

    CAS  PubMed  Google Scholar 

  49. 49.

    M. Naghdi, M. Taheran, S. K. Brar, M. Verma, R. Y. Surampalli, and J. R. Valero (2015). Beilstein J. Nanotechnol. 6, 2354.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    N. Phougat, M. Kumar, R. V. Saini, and A. K. Chhillar Green chemistry approach towards nanoparticle synthesis. in V. C. Kalia and A. K. Saini (eds.), Metabolic engineering for bioactive compounds: strategies and processes (Springer, Singapore, 2017), p. 249.

    Google Scholar 

  51. 51.

    H. Duan, D. Wang, and Y. Li (2015). Chem. Soc. Rev. 44, 5778.

    CAS  PubMed  Google Scholar 

  52. 52.

    S. Menon, S. Rajeshkumar, and V. Kumar (2017). Resour. Effic. Technol. 3, 516.

    Google Scholar 

  53. 53.

    M. Ovais, A. T. Khalil, M. Ayaz, I. Ahmad, S. K. Nethi, and S. Mukherjee (2018). Int. J. Mol. Sci. 19, 4100.

    PubMed Central  Google Scholar 

  54. 54.

    M. Ovais, A. T. Khalil, A. Raza, M. A. Khan, I. Ahmad, N. U. Islam, M. Saravanan, M. F. Ubaid, M. Ali, and Z. K. Shinwari (2016). Nanomedicine. 11, 3157.

    CAS  PubMed  Google Scholar 

  55. 55.

    M. Camas, F. Celik, A. Sazak Camas, and H. B. Ozalp (2019). Part. Sci. Technol. 37, 31.

    CAS  Google Scholar 

  56. 56.

    I. Fratoddi, I. Venditti, C. Cametti, and M. V. Russo (2015). Nano Res. 8, 1771.

    CAS  Google Scholar 

  57. 57.

    B. D. Chithrani, A. A. Ghazani, and W. C. Chan (2006). Nano Lett. 6, 662.

    CAS  PubMed  Google Scholar 

  58. 58.

    G. Tomoaia, O. Horovitz, A. Mocanu, A. Nita, A. Avram, C. P. Racz, O. Soritau, M. Cenariu, and M. Tomoaia-Cotisel (2015). Colloids Surf B Biointerfaces. 135, 726.

    CAS  PubMed  Google Scholar 

  59. 59.

    E. C. Dreaden, L. A. Austin, M. A. Mackey, and M. A. El-Sayed (2012). Ther. Deliv. 3, 457.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


This work was financially supported by Shahid Beheshti University of Medical Sciences, Tehran, Iran (Grant Number 20417).

Author information



Corresponding authors

Correspondence to Hamed Barabadi or Masoumeh Rashedi or Muthupandian Saravanan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barabadi, H., Vahidi, H., Mahjoub, M.A. et al. Emerging Antineoplastic Gold Nanomaterials for Cervical Cancer Therapeutics: A Systematic Review. J Clust Sci 31, 1173–1184 (2020). https://doi.org/10.1007/s10876-019-01733-2

Download citation


  • Cancer nanotechnology
  • Nanotoxicity
  • Anticancer activity
  • Cervical cancer cells
  • Gold nanoparticles