Sustainable Utilization of Molasses Towards Green Synthesis of Silver Nanoparticles for Colorimetric Heavy Metal Sensing and Catalytic Applications

Abstract

A novel and facile synthetic route were evaluated towards the formation of silver nanoparticles (AgNPs) by exploiting molasses as a biomaterial for the first time. The sugar molasses is a viscous material produced from sugarcane refining and the bio-components responsible for the formation of crystalline AgNPs validated by FTIR, UV–Vis spec., EDX, and XRD. The almost oval-shaped AgNPs with an average of 16 nm size were analyzed through DLS and TEM, respectively. Based on the significant characterization results, the AgNPs was employed for simple colorimetric detection of mercury (Hg2+) at low concentration. Here, we also described its catalytic efficacy for the reduction of 4-NP. The AgNPs found to have excellent efficacy in the detection of Hg2+ at 0.02 µM concentration. It also proved to have a prominent role in the reduction of 4-NP with 80% conversion efficiency even after 6 cycles. Combining highly selective and sensitive sensors as well as efficient and convenience catalysts have been proposed as detection and catalyzing nanomaterial for the environmental pollutants in water. The approach in this work is cost-effective and provides potential opportunities in environmental fields for a sustainable future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

References

  1. 1.

    G. Manjari, S. Saran, T. Arun, A. V. B. Rao, and S. P. Devipriya (2017). J. Saudi Chem. Soc.21, 610.

    CAS  Google Scholar 

  2. 2.

    P. Velmurugan, M. Iydroose, S. M. Lee, M. Cho, J. H. Park, V. Balachandar, and B. T. Oh (2014). Ind. J. Micro.54, 196.

    CAS  Google Scholar 

  3. 3.

    P. S. Devipriya, S. Banerjee, S. R. Chowdhury, and G. S. Kumar (2012). RSC Adv.2, 11578.

    Google Scholar 

  4. 4.

    R. G. Saratale, G. D. Saratale, H. S. Shin, J. M. Jacob, A. Pugazhendhi, M. Bhaisare, and G. Kumar (2018). Environ. Sci. Poll. Res.25, 10164.

    CAS  Google Scholar 

  5. 5.

    R. Mythili, T. Selvankumar, S. Kamala-Kannan, C. Sudhakar, F. Ameen, A. Al-Sabri, K. Selvam, M. Govarthanan, and H. Kim (2018). Mater. Lett.225, 101.

    CAS  Google Scholar 

  6. 6.

    M. Khatami, I. Sharifi, M. A. Nobre, N. Zafarnia, and M. R. Aflatoonian (2018). Green Chem. Lett. Rev.11, 125.

    CAS  Google Scholar 

  7. 7.

    A. Schieber, F. C. Stintzing, and R. Carle (2001). Tren. Food Sci. Technol.12, 401.

    CAS  Google Scholar 

  8. 8.

    D. Yan, Y. Lu, Y. F. Chen, and Q. Wu (2011). Biores. Technol.102, 6487.

    CAS  Google Scholar 

  9. 9.

    M. Nitschke and S. G. Costa (2007). Tren. Food Sci. Technol.18, 252.

    CAS  Google Scholar 

  10. 10.

    J. Xia, Z. Xu, H. Xu, J. Liang, S. Li, and X. Feng (2014). Bioresour. Technol.164, 241.

    CAS  PubMed  Google Scholar 

  11. 11.

    L. Wu, S. Wu, J. Qiu, C. Xu, S. Li, and H. Xu (2017). Food Chem.229, 761.

    CAS  PubMed  Google Scholar 

  12. 12.

    Y. Nagai, T. Mizutani, H. Iwabe, S. Araki and M. Suzuki (2001). In: Proceedings of the 60th annual meeting of sugar industry technologists in Taiwan 2001.

  13. 13.

    C. M. Gumiaraes, M. S. Giao, S. S. Martinez, A. L. Pintado, M. E. Pintado, L. S. Bento, and F. X. Malcata (2007). J. Food Sci.72, 39.

    Google Scholar 

  14. 14.

    A. Scalbert, C. Manach, C. Morand, C. Rémésy, and L. Jiménez (2005). Crit. Rev. Food Sci. Nut.45, 287.

    CAS  Google Scholar 

  15. 15.

    B. Payet, A. Shum, C. Sing, and J. Smadja (2006). J. Agric. Food Chem.54, 7270.

    CAS  PubMed  Google Scholar 

  16. 16.

    V. Valli, A. M. Gómez-Caravaca, M. Di Nunzio, F. Danesi, M. F. Caboni, and A. Bordoni (2012). J Agric. Food Chem.60, 12508.

    CAS  PubMed  Google Scholar 

  17. 17.

    J. Du, M. Zhao, W. Huang, Y. Deng, and Y. He (2018). Anal. Bioanal. Chem.410, 4519.

    CAS  PubMed  Google Scholar 

  18. 18.

    K. Wu, X. Zhao, M. Chen, H. Zhang, Z. Liu, X. Zhang, X. Zhu, and Q. Liu (2018). New J. Chem.42, 9578.

    CAS  Google Scholar 

  19. 19.

    W. Huang, Y. Deng, and Y. He (2017). Biosens. Bioelectron.91, 89.

    CAS  PubMed  Google Scholar 

  20. 20.

    Y. T. Wong, S. Y. Pang, M. K. Tsang, Y. Liu, H. Huang, S. F. Yu, and J. Hao (2019). Nanoscale Adv.1, 265.

    CAS  Google Scholar 

  21. 21.

    Q. Liu, Y. Yang, H. Li, R. Zhu, Q. Shao, S. Yang, and J. Xu (2015). Biosens. Bioelectron.64, 147.

    CAS  PubMed  Google Scholar 

  22. 22.

    Y. He, B. Xu, W. Li, and H. Yu (2015). J. Agric. Food Chem.63, 2930.

    CAS  PubMed  Google Scholar 

  23. 23.

    K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, and A. Rafipour (2012). Sens. Actuators B Chem.161, 880.

    CAS  Google Scholar 

  24. 24.

    M. Chen, B. Yang, J. Zhu, H. Liu, X. Zhang, X. Zheng, and Q. Liu (2018). Mat. Sci. Eng. C90, 610.

    CAS  Google Scholar 

  25. 25.

    K. Aslan, J. R. Lakowicz, and C. D. Geddes (2005). Analyt. Chem.77, 2007.

    CAS  Google Scholar 

  26. 26.

    P. G. Mahajan, N. C. Dige, B. D. Vanjare, A. R. Phull, S. J. Kim, and K. H. Lee (2019). J. Lumines.206, 624.

    CAS  Google Scholar 

  27. 27.

    M. Gangarapu, S. Sarangapany, K. K. Veerabhali, S. P. Devipriya, and V. B. R. Arava (2017). J. Clus. Sci.28, 3127.

    CAS  Google Scholar 

  28. 28.

    G. Wu, X. Liang, L. Zhang, Z. Tang, M. Al-Mamun, H. Zhao, and X. Su (2017). ACS Appl. Mater. Interface.9, 18207.

    CAS  Google Scholar 

  29. 29.

    Y. Junejo, A. Baykal, M. Safdar, and A. Balouch (2017). Appl. Surf. Sci.290, 499.

    Google Scholar 

  30. 30.

    M. Gangarapu, S. Sarangapany, D. P. Suja, and V. B. R. Arava (2018). Appl. Nanosci.8, 1123.

    CAS  Google Scholar 

  31. 31.

    A. S. Santhosh, S. Sandeep, and N. K. Swamy (2019). Surf. Interfac.14, 50.

    CAS  Google Scholar 

  32. 32.

    S. Saran, G. Manjari, and S. P. Devipriya (2018). Catal. Lett.44, 1.

    Google Scholar 

  33. 33.

    R. Sankar, A. Karthik, K. Prabu, S. Karthik, K. S. Shivashangari, and V. Ravikumar (2013). Coll. Surf. B Biointerf.108, 80–84.

    CAS  Google Scholar 

  34. 34.

    M. R. C. Sytu and D. H. Camacho (2018). Biol. Nano. Sci.8, 835.

    Google Scholar 

  35. 35.

    Z. Zhang, T. Si, J. Liu, K. Han, and G. Zhou (2018). RSC Adv.8, 27349.

    CAS  Google Scholar 

  36. 36.

    G. Manjari, S. Saran, T. Arun, S. P. Devipriya, and A. V. B. Rao (2017). J. Clus. Sci.28, 2041.

    CAS  Google Scholar 

  37. 37.

    R. S. Priya, D. Geetha, and P. S. Ramesh (2016). Ecotox. Environ. Saf.134, 308.

    CAS  Google Scholar 

  38. 38.

    V. Marimuthu, S. Chandirasekar, and N. Rajendiran (2018). Chem. Select.3, 3918.

    CAS  Google Scholar 

  39. 39.

    A. Amirjani and D. F. Haghshenas (2019). Talanta192, 418.

    CAS  PubMed  Google Scholar 

  40. 40.

    M. Annadhasan, T. Muthukumarasamyvel, V. R. Sankar Babu, and N. Rajendiran (2014). ACS Sustain Chem. Eng.2, 887.

    CAS  Google Scholar 

  41. 41.

    P. Buduru, B. S. R. Reddy, and N. V. S. Naidu (2017). Sens. Actua. B Chem.244, 972.

    CAS  Google Scholar 

  42. 42.

    D. Sahu, N. Sarkar, G. Sahoo, P. Mohapatra, and S. K. Swain (2017). Sens. Actuat B Chem.246, 96.

    CAS  Google Scholar 

  43. 43.

    V. Kumar, D. K. Singh, S. Mohan, D. Bano, R. K. Gundampati, and S. H. Hasan (2017). J. Photochem. Photobiol. B Biol.168, 67.

    CAS  Google Scholar 

  44. 44.

    Z. Yan, L. Fu, X. Zuo, and H. Yang (2018). Appl. Cat. B: Environ.226, 23.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Pondicherry University for its Central instrumentation facility.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarangapany Saran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manjari, G., Parthiban, A. & Saran, S. Sustainable Utilization of Molasses Towards Green Synthesis of Silver Nanoparticles for Colorimetric Heavy Metal Sensing and Catalytic Applications. J Clust Sci 31, 1137–1145 (2020). https://doi.org/10.1007/s10876-019-01721-6

Download citation

Keywords

  • Bio-synthesis
  • Molasses
  • Ag nanoparticles
  • Catalysis
  • Sensors