Skip to main content
Log in

Biomimetic Green Synthesis and Characterization of Nanoparticles from Leave Extract of Lavatera cretica and Their Improving Glucose Bigotry

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study aims to examine the biosynthesis and characterization of silver nanoparticles using Lavatera cretica (LCAgNPs) leaf extract mixed with silver nitrate and improving their glucose bigotry. The biosynthesis was first confirmed by the color change from colorless (metal salt solution) to brown (nanoparticle colloidal dispersion). The occurrence of the nanoparticles was further ascertained by several physicochemical studies including UV–Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) tomography, Fourier transform-infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The UV–Vis spectroscopy of LCAgNPs indicated the surface plasmon resonance signature of Ag NPs at around 440 nm. The TEM analysis revealed a well-dispersed sphere that varied in size from 5 to 24 nm. The EDX results established that Ag was the major element and others such as C, O and Cl were also present, which specified that the biomolecules coincided the AgNPs. The FT-IR spectroscopic study exhibited that the functional groups such as O–H, C–O, N–H, C–H and C=O were accountable for the synthesis of AgNPs. The XRD pattern represented the crystalline nature of metallic Ag. In this results, it could be clinched that the silver nitrate was reduced to silver nanoparticles of small size and high stability, which were devoid of impurities. Hence, this study has proved that L. cretica leaf is a good source for the synthesis of AgNPs and their improved glucose bigotry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Manosalva, G. Tortella, M. Cristina Diez, H. Schalchli, A. B. Seabra, N. Durán, and O. Rubilar (2019). World J. Microbiol. Biotechnol.35, (6), 88.

    Article  Google Scholar 

  2. C. P. Gong, S. C. Li, and R. Y. Wang (2018). J. Photochem. Photobiol. B.183, 137–141.

    Article  CAS  Google Scholar 

  3. N. Atale, S. Saxena, J. G. Nirmala, R. T. Narendhirakannan, S. Mohanty, and V. Rani (2016). Appl. Biochem. Biotechnol.181, (3), 1140–1154.

    Article  Google Scholar 

  4. World Health Organization (WHO). Global Report on Diabetes WHO (Switzerland, Geneva, 2016), p. 2016.

    Google Scholar 

  5. K. Chen, A. Jih, O. Osborn, S. T. Kavaler, W. Fu, R. Sasik, R. Saito, and J. J. Kim (2018). Physiol. Genomics50, 144–157.

    Article  CAS  Google Scholar 

  6. F. F. Mo, H. X. Liu, Y. Zhang, J. Hua, D. D. Zhao, T. An, D. W. Zhang, T. Tian, and S. H. Gao (2019). Iran J. Basic Med. Sci.22, (3), 262–266.

    PubMed  PubMed Central  Google Scholar 

  7. F. Keshavarzi and S. Golsheh (2019). Mol. Genet. Genomic Med.7, (5), e631.

    Article  Google Scholar 

  8. S. Kalakotla, N. Jayarambabu, G. K. Mohan, R. B. S. M. N. Mydin, and V. R. Gupta (2019). Colloids Surf. B. Biointerfaces174, 199–206.

    Article  CAS  Google Scholar 

  9. S. Ben-Nasr, S. Aazza, W. Mnif, and M. G. Miguel (2015). Pharmacogn. Mag.11, 48–54.

    Article  Google Scholar 

  10. L. Viegi, A. Pieroni, P. M. Guarrera, and R. Vangelisti (2003). J. Ethnopharmacol.89, 221–244.

    Article  Google Scholar 

  11. C. Veeramani, M. A. Alsaif, and K. S. Al-Numair (2018). Biomed. Pharmacother.106, 183–191.

    Article  CAS  Google Scholar 

  12. D. Singh, V. Kumar, E. Yadav, N. Falls, M. Singh, U. Komal, and A. Verma (2018). IET Nanobiotechnol.12, (6), 748–756.

    Article  Google Scholar 

  13. P. Trinder (1969). J. Clin. Pathol.22, 246.

    Article  CAS  Google Scholar 

  14. W. Bürgi, M. Briner, N. Franken, and A. C. Kessler (1988). Clin. Biochem.21, 311–314.

    Article  Google Scholar 

  15. D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher, and R. C. Turner (1984). Diabetologia28, 412–419.

    Article  Google Scholar 

  16. P. Chomczynski and N. Sacchi (1987). Anal. Biochem.162, (1), 156–159.

    Article  CAS  Google Scholar 

  17. K. J. Livak and T. D. Schmittgen (2001). Methods25, 402–408.

    Article  CAS  Google Scholar 

  18. R. Norouzirad, H. Gholami, M. Ghanbari, M. Hedayati, P. González-Muniesa, S. Jeddi, and A. Ghasemi (2019). Life Sci.3205, (19), 30424–30432.

    Google Scholar 

  19. H. Adela and B. H. Frank (2015). Pharmacoeconomics33, (7), 673–689.

    Article  Google Scholar 

  20. A. Tang, A. C. F. Coster, K. T. Tonks, L. K. Heilbronn, N. Pocock, L. Purtell, M. Govendir, J. B. Lythe, J. Zhang, A. Xu, D. J. Chisholm, N. A. Johnson, J. R. Greenfield, and D. Samocha-Bonet (2019). J. Clin. Med.8, (5), 623–644.

    Article  CAS  Google Scholar 

  21. I. Gabriely, X. H. Ma, X. M. Yang, G. Atzmon, M. W. Rajala, A. H. Berg, P. Scherer, L. Rossetti, and N. Barzilai (2002). Diabetes51, (10), 2951–2958.

    Article  CAS  Google Scholar 

  22. C. Veeramani, M. A. Alsaif, and K. S. Al-Numair (2017). Biomed. Pharmacother.96, 1349–1357.

    Article  CAS  Google Scholar 

  23. X. Huang, G. Liu, J. Guo, and Z. Su (2018). Int. J. Biol. Sci.14, (11), 1483–1496.

    Article  CAS  Google Scholar 

  24. J. Wang, X. Hu, W. Ai, F. Zhang, K. Yang, L. Wang, X. Zhu, P. Gao, G. Shu, Q. Jiang, and S. Wang (2017). Biochem. Biophys. Res. Commun.489, (4), 432–438.

    Article  CAS  Google Scholar 

  25. C. Kim, J. Lee, M. B. Kim, and J. K. Hwang (2018). Food Sci. Biotechnol.28, (3), 895–905.

    Article  Google Scholar 

  26. X. Guo, W. Sun, G. Luo, L. Wu, G. Xu, D. Hou, Y. Hou, X. Guo, X. Mu, L. Qin, and T. Liu (2019). FEBS Open Bio.9, (5), 1008–1019.

    Article  CAS  Google Scholar 

  27. X. Li, X. Li, G. Wang, Y. Xu, Y. Wang, R. Hao, and X. Ma (2018). Front. Med.12, (6), 688–696.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No. RGP-249.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinnadurai Veeramani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veeramani, C., Alsaif, M.A. & Al-Numair, K.S. Biomimetic Green Synthesis and Characterization of Nanoparticles from Leave Extract of Lavatera cretica and Their Improving Glucose Bigotry. J Clust Sci 31, 1087–1095 (2020). https://doi.org/10.1007/s10876-019-01716-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01716-3

Keywords

Navigation