Preparation and Enhanced Photo-/Electro-Catalytic Activities of Polypyrrole Coating [CuMo12O40]6− POM Based MOF Composite

Abstract

A new polyoxometalates (POMs) based hybrid compound with helical chains, H4[Cu2(bpe)3](CuMo12O40) (Cu2CuMo12) (bpe = bis(4-pyridyl)ethylene), was synthesized by the reaction of Cu(NO3)2 (NH4)6Mo7O24 and bpe, and characterized by elemental analyses, IR, PXRD and X-ray single crystal diffraction, in which the Keggin-type [CuMo12O40]6− polyoxoanion was fabricated in suit. Moreover, to improve the photo-/electo-catalytic activities, the polypyrrole (PPy) coating Cu2CuMo12 composites (Cu2CuMo12/PPy-n) have been prepared and exhibited excellent photo- and electro-catalytic activities. More specifically, the photocatalytic decomposition rate of methylene blue (MB) using the Cu2CuMo12/PPy-2 as catalyst is 93.1% under the visible light, which is much larger than that of Cu2CuMo12 (13.1%). The electrochemical properties of Cu2CuMo12/PPy-2 exhibit similar redox behavior to the Cu2CuMo12, involving two-, four- and six-electron-reduced species for the reduction of nitrite.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    C. L. Hill (1998). Chem. Rev.98, 1.

    CAS  Article  Google Scholar 

  2. 2.

    J. T. Rhule, C. L. Hill, D. A. Judd, and R. F. Schinazi (1998). Chem. Rev.98, 327.

    CAS  PubMed  Google Scholar 

  3. 3.

    S. Uchida, R. Kawamoto, H. Tagami, Y. Nakagawa, and N. Mizuno (2008). J. Am. Chem. Soc.130, 12370.

    CAS  PubMed  Google Scholar 

  4. 4.

    X. H. Wang, J. F. Liu, J. X. Li, Y. Yang, J. T. Liu, B. Li, and M. T. Pope (2003). J. Inorg. Biochem.94, 279.

    CAS  PubMed  Google Scholar 

  5. 5.

    J. M. Clemente-Juan and E. Coronado (1999). Coord. Chem. Rev.193, 361.

    Google Scholar 

  6. 6.

    D. L. Long, H. Abbas, P. Kögerler, and L. Cronin (2005). Angew. Chem. Int. Ed.44, 3415.

    CAS  Google Scholar 

  7. 7.

    Y. F. Song and R. Tsunashima (2012). Chem. Soc. Rev.41, 7384.

    CAS  PubMed  Google Scholar 

  8. 8.

    S. S. Wang and G. Y. Yang (2015). Chem. Rev.115, 4893.

    CAS  PubMed  Google Scholar 

  9. 9.

    H. Lv, Y. V. Geletii, C. Zhao, J. W. Vickers, G. Zhu, Z. Luo, J. Song, T. Lian, D. G. Musaev, and C. L. Hill (2012). Chem. Soc. Rev.41, 7572.

    CAS  PubMed  Google Scholar 

  10. 10.

    C. Y. Sun, S. X. Liu, D. D. Liang, K. Z. Shao, Y. H. Ren, and Z. M. Su (2009). J. Am. Chem. Soc.131, 1883.

    CAS  PubMed  Google Scholar 

  11. 11.

    L. J. Xu, W. Z. Zhou, L. Y. Zhang, B. Li, H. Y. Zang, Y. H. Wang, and Y. G. Li (2015). Cryst. Eng. Comm.17, 3708.

    CAS  Google Scholar 

  12. 12.

    X. L. Wang, N. Li, A. X. Tian, J. Ying, T. J. Li, X. L. Lin, J. Luan, and Y. Yang (2014). Inorg. Chem.53, 7118.

    CAS  PubMed  Google Scholar 

  13. 13.

    Y. Q. Chen, G. R. Li, Y. K. Qu, Y. H. Zhang, K. H. He, Q. Gao, and X. H. Bu (2013). The frequency parameter controls the distended. Cryst. Growth Des.13, 901.

    CAS  Google Scholar 

  14. 14.

    X. L. He, Y. P. Liu, K. N. Gong, Z. G. Han, and X. L. Zhai (2015). Inorg. Chem.4, 1215.

    Google Scholar 

  15. 15.

    R. D. Gall, C. L. Hill, and J. E. Walker (1996). Chem. Mater.8, 2523.

    CAS  Google Scholar 

  16. 16.

    C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck (1992). Nature359, 710.

    CAS  Google Scholar 

  17. 17.

    D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky (1998). Science279, 548.

    CAS  PubMed  Google Scholar 

  18. 18.

    S. Wang, H. L. Li, L. Y. Zhang, B. Li, X. Cao, G. H. Zhang, S. L. Zhang, and L. X. Wu (2014). Chem. Commun.50, 9700.

    CAS  Google Scholar 

  19. 19.

    Y. Y. Chen, M. Han, Y. Y. Tang, J. C. Bao, S. L. Li, Y. Q. Lan, and Z. H. Dai (2015). Chem. Commun.51, 12377.

    CAS  Google Scholar 

  20. 20.

    K. Alimaje, X. Wang, Z. Y. Zhang, J. Peng, Z. Y. Shi, X. Yu, and Z. X. Ren (2013). J. Clust. Sci.24, 1021.

    CAS  Google Scholar 

  21. 21.

    A. X. Tian, M. L. Yang, Y. B. Fu, J. Ying, and X. L. Wang (2019). Inorg. Chem.58, 4190.

    CAS  PubMed  Google Scholar 

  22. 22.

    X. Li, X. Y. Yang, J. Q. Sha, T. Han, C. J. Du, Y. J. Sun, and Y. Q. Lan (2019). ACS Appl. Mater. Interfaces.11, 16896.

    CAS  PubMed  Google Scholar 

  23. 23.

    X. Li, L. Sun, X. Yang, K. Zhou, G. Zhang, Z. Tong, and J. Sha (2019). Analyst.144, 3347.

    CAS  PubMed  Google Scholar 

  24. 24.

    J. Q. Sha, X. Y. Yang, Y. Chen, P. P. Zhu, Y. F. Song, and J. Jiang (2018). ACS Appl. Mater. Interfaces.10, 16660.

    CAS  PubMed  Google Scholar 

  25. 25.

    L. Zhang, S. B. Li, C. J. Gómez-García, H. Y. Ma, C. J. Zhang, H. J. Pang, and B. N. Li (2018). ACS Appl. Mater. Interfaces.1037, 31498.

    Google Scholar 

  26. 26.

    X. Yang, P. Zhu, J. Ren, Y. Chen, X. Li, J. Sha, and J. Jiang (2019). Chem. Commun.55, 1201.

    CAS  Google Scholar 

  27. 27.

    D. F. Chai, C. J. Gómez-García, B. N. Li, H. J. Pang, H. Y. Ma, X. M. Wang, and L. C. Tan (2019). Chem. Eng. J.373, 587.

    CAS  Google Scholar 

  28. 28.

    S. B. Li, L. Zhang, Y. Q. Lan, K. P. O’Halloran, H. Y. Ma, and H. J. Pang (2018). Chem. Commun.54, 1964.

    CAS  Google Scholar 

  29. 29.

    T. Inoue, A. Fujishima, S. Konishi, and K. Honda (1979). Nature.277, 637.

    CAS  Google Scholar 

  30. 30.

    A. Fujishima and K. Honda (1972). Nature238, 37.

    CAS  PubMed  Google Scholar 

  31. 31.

    C. Gao, J. Wang, H. Xu, and Y. Xiong (2017). Chem. Soc. Rev.46, 2799.

    CAS  PubMed  Google Scholar 

  32. 32.

    A. Tian, Y. Tian, Y. Ning, X. Hou, H. Ni, X. Ji, and J. Ying (2016). Dalton Trans.45, 13925.

    CAS  PubMed  Google Scholar 

  33. 33.

    B. Liu, J. Yang, G. C. Yang, and J. F. Ma (2012). Inorg. Chem.52, 84.

    CAS  PubMed  Google Scholar 

  34. 34.

    P. P. Zhu, L. J. Sun, N. Sheng, J. Q. Sha, G. D. Liu, L. Yu, H. B. Qiu, and S. X. Li (2016). Cryst. Growth Des.16, 3215.

    CAS  Google Scholar 

  35. 35.

    X. X. Qi, J. H. Lv, and K. Yu (2016). RSC Adv.6, 72544.

    CAS  Google Scholar 

  36. 36.

    J. Sha, X. Yang, J. Li, L. Sun, S. Li, and N. Sheng (2017). J. Clust. Sci.28, 869.

    CAS  Google Scholar 

  37. 37.

    Z. J. Liu, S. Yao, Z. M. Zhang, and E. B. Wang (2013). RSC Adv.3, 20829.

    CAS  Google Scholar 

  38. 38.

    X. Xu, X. Gao, T. Lu, X. Liu, and X. Wang (2015). J. Mater. Chem. A3, 198.

    CAS  Google Scholar 

  39. 39.

    X. Xu, X. Gao, Z. Cui, X. Liu, and X. Zhang (2014). Dalton Trans.43, 13424.

    CAS  PubMed  Google Scholar 

  40. 40.

    X. D. Xi, G. Wang, B. F. Liu, and S. Dong (1995). Electrochim. Acta.40, 1025.

    CAS  Google Scholar 

  41. 41.

    P. P. Zhu, N. Sheng, M. T. Li, J. S. Li, G. D. Liu, X. Y. Yang, J. Q. Sha, M. L. Zhu, and J. Z. Jiang (2017). J. Mater. Chem. A5, 17920.

    CAS  Google Scholar 

  42. 42.

    Z. Han, Y. Zhao, J. Peng, Y. Feng, J. Yin, and Q. Liu (2005). Electroanalysis17, 1097.

    CAS  Google Scholar 

  43. 43.

    G. M. Sheldrick Program for Structure Refinement (University of Göttingen, Germany, 1997).

    Google Scholar 

  44. 44.

    H. T. Evans Jr. and M. T. Pope (1984). Inorg. Chem.23, 501.

    CAS  Google Scholar 

  45. 45.

    Y. Jiao, G. Chen, D. Chen, J. Pei, and Y. Hu (2017). J. Mater. Chem. A5, 23744.

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Heilongjiang Provincial Health and Family Planning Commission on Scientific Research Project (2017-405).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jisheng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, J. Preparation and Enhanced Photo-/Electro-Catalytic Activities of Polypyrrole Coating [CuMo12O40]6− POM Based MOF Composite. J Clust Sci 31, 1051–1059 (2020). https://doi.org/10.1007/s10876-019-01710-9

Download citation

Keywords

  • Polyoxometalates
  • Metal–organic framework
  • Helix
  • Electrocatalytic activity
  • Photocatalytic activity