Photobiosynthesis of Silver Nanoparticle Using Extract of Aspergillus flavus CR500: Its Characterization, Antifungal Activity and Mechanism Against Sclerotium rolfsii and Rhizoctonia solani

Abstract

Newly biosynthesized metallic nanoparticle with antimicrobial characteristic attracted its demand in the field of disease management. The present study deals with the synthesis of silver nanoparticle using the extract Aspergillus flavus CR500 under the presence of sunlight. The characterization via scanning and transmission electron microscope revealed their size distribution ranges from 60 to 130 nm with a high content of Ag, confirmed by energy dispersive X-ray spectroscopic analysis. X-ray diffraction and Fourier transform infrared analysis exposed the crystalline nature and active functional group availability on silver nanoparticle (AgNPs). Photobiosynthesized AgNPs have high antimicrobial property and completely inhibited the growth of plant pathogenic fungi Rhizoctonia solani GPB and Sclerotium rolfsii at the concentration of 150 and 300 µg/L respectively. AgNPs exposure increases the lipid peroxidation (via reactive oxygen species production) in R. solani and S. rolfsii, might be a primary cause of AgNPs toxicity to fungal cell. However, fungal cell responded to oxidative stress caused by AgNPs by increasing the catalase and peroxidase activity. In order to assess the AgNPs applicability in seed protection and its impact on germination, growth and development of the crop, Cicer arietinum and Vigna radiata seeds were used for growth and germination assay under AgNPs exposure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    S. Mishra and H. B. Singh (2015). Appl. Microbiol. Biotechnol.99, 1097–1107.

    CAS  PubMed  Google Scholar 

  2. 2.

    S. D. Gupta, A. Agarwal, and S. Pradhan (2018). Ecotoxicol. Environ. Saf.161, 624–633.

    CAS  PubMed  Google Scholar 

  3. 3.

    F. Wang, Y. Hu, C. Guo, W. Huang, and C.-Z. Liu (2012). Bioresour. Technol.110, 120–124.

    CAS  PubMed  Google Scholar 

  4. 4.

    E. O. M. Ali, N. A. Shakil, V. S. Rana, D. J. Sarkar, S. Majumder, P. Kaushik, B. B. Singh, and J. Kumar (2017). Ind. Crops Prod.108, 379–387.

    Google Scholar 

  5. 5.

    F. N. Spagnoletti, C. Spedalieri, F. Kronberg, and R. Giacometti (2019). J. Environ. Manage.231, 457–466.

    CAS  PubMed  Google Scholar 

  6. 6.

    A. Segorbe, E. D. Pietro, D. Pérez-Nadales, and D. Turrà (2017). Mol. Plant Pathol.18, 912–924.

    CAS  PubMed  Google Scholar 

  7. 7.

    F. E. Hartmann, A. Sánchez-Vallet, B. A. McDonald, and D. Croll (2017). ISME J.11, 1189–1204.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Y. Wang, P. Westerhoff, and K. D. Hristovski (2012). J. Hazard. Mater.201, 16–22.

    PubMed  Google Scholar 

  9. 9.

    A. U. Khan, N. M. M. Khan, M. H. Cho, and M. M. Khan (2018). Bioprocess Biosyst. Eng.41, 1–20.

    CAS  PubMed  Google Scholar 

  10. 10.

    S. Chowdhury, A. Basu, and S. Kundu (2014). Nanoscale Res. Lett.9, (1), 365.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    S. Radhakrishnan, D. B. Munuswamy, Y. Devarajan, and A. Mahalingam (2018). Energy Sour. A Recov. Util. Environ. Effects40, (20), 2485–2493.

    CAS  Google Scholar 

  12. 12.

    Z. Huang, K. He, Z. Song, G. Zeng, A. Chen, L. Yuan, H. Li, L. Hu, Z. Guo, and G. Chen (2018). Chemosphere211, 573–583.

    CAS  PubMed  Google Scholar 

  13. 13.

    N. Pantidos and L. E. Horsfall (2014). J. Nanomed. Nanotechnol.5, (5), 1.

    Google Scholar 

  14. 14.

    A. T. Khalil, M. Ovais, I. Ullah, M. Ali, Z. K. Shinwari, D. Hassan, and M. Maaza (2018). Artif. Cells Nanomed. Biotechnol.46, (4), 838–852.

    CAS  PubMed  Google Scholar 

  15. 15.

    N. Jain, A. Bhargava, S. Majumdar, J. Tarafdar, and J. Panwar (2011). Nanoscale3, 635–641.

    CAS  PubMed  Google Scholar 

  16. 16.

    N. Durán, R. Cuevas, L. Cordi, O. Rubilar, and M. C. Diez (2014). Springer Plus3, (1), 645.

    PubMed  Google Scholar 

  17. 17.

    S. Prabhu and E. K. Poulose (2012). Int. Nano Lett.2, 1–10.

    Google Scholar 

  18. 18.

    F. M. Christensen, H. J. Johnston, V. Stone, R. J. Aitken, S. Hankin, S. Peters, and K. Aschberger (2010). Nanotoxicology4, 284–295.

    CAS  PubMed  Google Scholar 

  19. 19.

    A. Chen, G. Zeng, G. Chen, L. Liu, C. Shang, X. Hu, L. Lu, M. Chen, Y. Zhou, and Q. Zhang (2014). Process Biochem.49, (4), 589–598.

    CAS  Google Scholar 

  20. 20.

    J. E. Choi, S. Kim, J. H. Ahn, P. Youn, J. S. Kang, J. Yi, and D. Y. Ryu (2010). Aquat. Toxicol.100, (2), 151–159.

    CAS  PubMed  Google Scholar 

  21. 21.

    S. Arora, J. Jain, J. M. Rajwade, and K. M. Paknikar (2009). Toxicol. Appl. Pharmacol.236, 310–318.

    CAS  PubMed  Google Scholar 

  22. 22.

    A. Oukarroum, S. Bras, F. Perreault, and R. Popovic (2012). Ecotoxicol. Environ. Saf.78, 80–85.

    CAS  PubMed  Google Scholar 

  23. 23.

    H. S. Jiang, X. N. Qiu, G. B. Li, W. Li, and L. Y. Yin (2014). Environ. Toxicol. Chem.33, (6), 1398–1405.

    CAS  PubMed  Google Scholar 

  24. 24.

    V. Kumar and S. K. Dwivedi (2019). Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.124567.

    Article  PubMed  Google Scholar 

  25. 25.

    M. G. Babu and P. Gunasekaran (2009). Colloids Surf. B74, (1), 191–195.

    CAS  Google Scholar 

  26. 26.

    G. Prasad and S. K. Dwivedi (2017). EJBPS4, (7), 478–481.

    CAS  Google Scholar 

  27. 27.

    J. Sambrook, E. F. Fritsch, and T. Maniatis Molecular Cloning a laboratory manual (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  28. 28.

    J. H. White, A. Wise, M. J. Main, A. Green, N. J. Frasae, G. H. Disney, A. A. Barnes, P. Emosan, S. M. Foord, and S. H. Marshall (1998). Nature396, 679–682.

    CAS  PubMed  Google Scholar 

  29. 29.

    G. M. Boratyn, C. Camacho, P. S. Cooper, G. Coulouris, A. Fong, N. Ma, T. L. Madden, W. T. Matten, S. D. McGinnis, Y. Merezhuk, Y. Raytselis, E. W. Sayers, T. Tao, J. Ye, and I. Zaretskaya (2013). Nucleic Acids Res.41, W29–W33.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    S. Kumar, G. Stecher, M. Li, C. Knyaz, and K. Tamura (2018). Mol. Biol. Evol.35, 1547–1549.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    F. Q. Zhang, Y. S. Wang, Z. P. Lou, and J. D. Dong (2007). Chemosphere67, (1), 44–50.

    CAS  PubMed  Google Scholar 

  32. 32.

    J. Xu (2010). Plant Physiol.154, 1319–1334.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Z. J. Zhu, G. Wei, J. Li, Q. O. Qian, and J. Q. Yu (2004). Plant Sci.167, 527–533.

    CAS  Google Scholar 

  34. 34.

    M. Guilger, T. Pasquoto-Stigliani, N. Bilesky-Jose, R. Grillo, P. C. Abhilash, L. F. Fraceto, and R. de Lima (2017). Sci. Rep.7, 44421. https://doi.org/10.1038/srep44421.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    A. Kannan and R. K. Upreti (2008). J. Hazard. Mater.153, 609–615.

    CAS  PubMed  Google Scholar 

  36. 36.

    P. L. Gratão, C. C. Monteiro, R. F. Carvalho, T. Tezotto, F. A. Piotto, L. E. Peres, and R. A. Azevedo (2012). Plant Physiol. Biochem.56, 79–96.

    PubMed  Google Scholar 

  37. 37.

    D. T. Plummer Introduction to Practical Biochemistry (Tata McGraw Hill Publishing 640 Co. Ltd, London, 1979).

    Google Scholar 

  38. 38.

    D. K. Verma, S. H. Hasan, and R. M. Banik (2016). J. Photochem. Photobiol. B155, 51–59.

    CAS  PubMed  Google Scholar 

  39. 39.

    V. Kumar, D. K. Singh, S. Mohan, and S. H. Hasan (2016). J. Photochem. Photobiol. B155, 39–50.

    CAS  PubMed  Google Scholar 

  40. 40.

    J.-H. Lee, J.-M. Lim, P. Velmurugan, Y.-J. Park, Y.-J. Park, K.-S. Bang, and B.-T. Oh (2016). J. Photochem. Photobiol. B162, 93–99.

    CAS  PubMed  Google Scholar 

  41. 41.

    R. Al-Bahrani, J. Raman, H. Lakshmanan, A. A. Hassan, and V. Sabaratnam (2017). Mater. Lett.186, 21–25.

    CAS  Google Scholar 

  42. 42.

    V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, and B. Sreedhar (2016). Mater. Sci. Eng. C58, 36–43.

    CAS  Google Scholar 

  43. 43.

    A. E. Mohammed, F. F. B. Baz, and J. S. Albrahim (2018). 3 Biotech8, 72.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    K. P. Bocate, G. F. Reis, P. C. de Souza, A. G. O. Junior, N. Durán, G. Nakazato, and L. A. Panagio (2019). Int. J. Food Microbiol.291, 79–86.

    CAS  PubMed  Google Scholar 

  45. 45.

    V. Kumar, S. Singh, G. Singh, and S. K. Dwivedi (2019). Geomicrobiol. J.36, (9), 782–791.

    CAS  Google Scholar 

  46. 46.

    S. Neethu, S. J. Midhun, M. A. Sunil, S. Soumya, E. K. Radhakrishnan, and M. Jyothis (2018). J. Photochem. Photobiol. B180, 175–185.

    CAS  PubMed  Google Scholar 

  47. 47.

    A. Saravanakumar, M. M. Peng, M. Ganesh, J. Jayaprakash, M. Mohankumar, and H. T. Jang (2017). Artif. Cells Nanomed. Biotechnol.45, (6), 1165–1171.

    CAS  Google Scholar 

  48. 48.

    S. Basavaraja, S. D. Balaji, A. Lagashetty, A. H. Rajasab, and A. Venkataraman (2008). Mater. Res. Bull.43, (5), 1164–1170.

    CAS  Google Scholar 

  49. 49.

    M. Wojnicki, T. Tokarski, V. Hessel, K. Fitzner, and M. Luty-Błocho (2019). J. Flow Chem.9, (1), 1–7.

    CAS  Google Scholar 

  50. 50.

    H. Yang, Y. Wang, X. Chen, X. Zhao, L. Gu, H. Huang, J. Yan, C. Xu, G. Li, J. Wu, A. J. Edwards, B. Dittrich, Z. Tang, D. Wang, L. Lehtovaara, H. Häkkinen, and N. Zheng (2016). Nat. Commun.7, 12809.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    K. Rajaram, D. C. Aiswarya, and P. Sureshkumar (2015). Mater. Lett.138, 251–254.

    CAS  Google Scholar 

  52. 52.

    K. Anandalakshmi, J. Venugobal, and V. Ramasamy (2016). Appl. Nanosci.6, (3), 399–408.

    CAS  Google Scholar 

  53. 53.

    B. Kumar, S. Kumari, L. Cumbal, and A. Debut (2015). Asian Pac. J. Trop. Biomed5, (3), 192–195.

    CAS  Google Scholar 

  54. 54.

    A. Shafaghat (2015). Synth. React. Inorg. M.45, (3), 381–387.

    CAS  Google Scholar 

  55. 55.

    J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, and Y. K. Kim (2007). Nanomed. Nanotechnol. Biol. Med.3, (1), 95–101.

    CAS  Google Scholar 

  56. 56.

    M. Khatami, I. Sharifi, M. A. Nobre, N. Zafarnia, and M. R. Aflatoonian (2018). Green Chem. Lett. Rev.11, (2), 125–134.

    CAS  Google Scholar 

  57. 57.

    H. J. Park, S. H. Kim, H. J. Kim, and S. H. Choi (2006). Plant Pathol. J.22, (3), 295–302.

    Google Scholar 

  58. 58.

    J. S. Min, K. S. Kim, S. W. Kim, J. H. Jung, K. Lamsal, S. B. Kim, M. Y. Jung, and Y. S. Lee (2009). Plant Pathol. J.25, (4), 376–380.

    CAS  Google Scholar 

  59. 59.

    M. Kumari, V. P. Giri, S. Pandey, M. Kumar, R. Katiyar, C. S. Nautiyal, and A. Mishra (2019). Pestic. Biochem. Phys.157, 45–52.

    CAS  Google Scholar 

  60. 60.

    J. Xu, Y. Y. Zhu, Q. Ge, Y. L. Li, J. H. Sun, Y. Zhang, and X. J. Liu (2012). New Phytol.196, (1), 125–138.

    CAS  PubMed  Google Scholar 

  61. 61.

    G. Prasad, V. Kumar, and S. K. Dwivedi (2018). Asian J. Biol. Sci.13, 21–27.

    Google Scholar 

  62. 62.

    V. Kumar and S. K. Dwivedi (2019). Ecotoxicol. Environ. Saf.. https://doi.org/10.1016/j.ecoenv.2019.109734.

    Article  PubMed  Google Scholar 

  63. 63.

    C. Serra-Wittling, S. Houot, and E. Barriuso (1995). Biol. Fertil. Soils20, (4), 226–236.

    Google Scholar 

  64. 64.

    C. D. O. Timoteo, R. Paiva, M. V. Reis, P. I. C. Claro, L. M. Ferraz, J. M. Marconcini, and J. E. de Oliveira (2019). 3 Biotech9, 145.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head of the Department of Environmental Science, BBAU, Lucknow, India for providing Laboratory Facility. The authors are also thankful to National Centre for Microbial Resource (NCMR), Pune, India for providing Gene Sequencing Facility, the Director, USIC, BBAU, Lucknow for SEM and FTIR analysis and the support provided by Jiwaji University, Gwalior (M. P.) for XRD and TEM analysis. Two of us (Vinay Kumar and Ganesh Prasad) are grateful to UGC, New Delhi, India for providing fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. K. Dwivedi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kanaujiya, D., Kumar, V., Dwivedi, S.K. et al. Photobiosynthesis of Silver Nanoparticle Using Extract of Aspergillus flavus CR500: Its Characterization, Antifungal Activity and Mechanism Against Sclerotium rolfsii and Rhizoctonia solani. J Clust Sci 31, 1041–1050 (2020). https://doi.org/10.1007/s10876-019-01709-2

Download citation

Keywords

  • Nanoparticle
  • Shape and size of AgNPs, Antifungal mechanism
  • Oxidative stress
  • Antioxidants