Recent Progress on Pyrite FeS2 Nanomaterials for Energy and Environment Applications: Synthesis, Properties and Future Prospects


Solar energy is the extreme realistic solution to regularly growing energy crisis. Several solar energy conversion systems have been in harnessing into useful form of energy. The performance of solar energy devices depends on the properties of nanomaterial used for solar energy conversion. As the primary sources of energy are depleted increasingly and give rise to the energy and environmental crisis for humankind. Therefore, exploration of FeS2 pyrite nanostructures for energy and environment applications are carried out in this review. This review focuses on the synthesis, functionalization as well as applications of FeS2 nanomaterial. The shape and size control have been governed by the synthesis methods such as hydrothermal method, sulfidation, solvothermal method and hot injection method. All these methods are discussed in detail. The review involves overview of FeS2, also outlining the structure, basic magnetic, optical and transport properties. Then the comprehensive study regarding modification of FeS2 nanostructures is also illustrated. The well synthesized FeS2 nanomaterials have been used for basic building blocks of functional systems and their application in photovoltaics and photocatalysis is briefly reviewed. Lastly, various future strategies and trends in these research areas are outlined.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

(Reprinted with permissions from Ref. [54, 122, 217]. Copyright 2010 Royal Society of Chemistry. Copyright 2015 Royal Society of Chemistry)

Fig. 3

(Reprinted with permission from Ref. [4, 66, 68]. Copyright 2015 American Chemical Society and Ref. [66, 68])

Fig. 4

(Reprinted with permission from Ref. [98] and 92. Copyright 2013 American Chemical Soceity and ref [98])

Fig. 5

(Reprinted with permission of Ref. [101]. Copyright 2013 Elsevier)

Fig. 6

(Reprinted with permission from Ref. [108]. Copyright 2004 Elsevier)

Fig. 7

(Reprinted with permission of Ref. [128]. Copyright 1968 AIP)

Fig. 8

Reprint with permission from Ref. [55]. Copyright 2016 Royal Soceity of Chemistry

Fig. 9

(Reprinted with permission of Ref. [67] and [225]. Copyright 2013 American Chemical Soceity)

Fig. 10

(Reproduced with permission of Ref. [161]. Copyright 2015 RSC)

Fig. 11

(Reproduced with permission of Ref. [215]. Copyright 2016 Elsevier)

Fig. 12
Fig. 13

(Reproduced with permission of Ref. [30]. Copyright 2013 Royal Society of Chemistry)

Fig. 14

(Reprinted from ref. [73]. Copyright 2011, with permission from ACS)

Fig. 15

(Reproduced with permission of Ref. [90]. Copyright 2013 RSC)

Fig. 16

(Reproduced with permission of Ref. [194]. Copyright 2014 Wiley)

Fig. 17

(Reprinted with permission from [199])

Fig. 18

(Reprinted with permission from Ref. [83]. Copyright 2011 elsevier)

Fig. 19

(Reproduced with permission of Ref. [35]. Copyright 2013 Springer)

Fig. 20

(Reproduced with permission of Ref. [200]. Copyright 2013 Elsevier)

Fig. 21

(Reproduced with permission of Ref. [201]. Copyright 2014 RSC)

Fig. 22

(Reproduced with permission from Ref. [202]. Copyright 2011 Elsevier)

Fig. 23

(Reproduced with permission of Ref. [203]. Copyright 2014 RSC)

Fig. 24

(Reproduced with permission of Ref. [52]. Copyright 2014 Springer)

Fig. 25

(Reprinted with permissions of Ref. [205]. Copyright permissions 2006 Elseiver)

Fig. 26

(Reprinted with permissions of Ref. [206]. Copyright permissions 2008 Elseiver)

Fig. 27

(Reprinted with permission of Ref. [207]. Copyright 2012 Elsevier)

Fig. 28

(Reproduced with permission of Ref. [208]. Copyright 2013 Elsevier)

Fig. 29

(Reproduced with permission of Ref. [33]. Copyright 2014 Royal Society of Chemistry)

Fig. 30

(Reproduced with permission of Ref. [40]. Copyright 2007 Springer)

Fig. 31

(Reprinted with permission of Ref. [123]. Copyright 2011 Elsevier)

Fig. 32

(Reprinted with permission of Ref. [209]. Copyright 2013 Elsevier)

Fig. 33

(Reprinted with permission of Ref. [93]. Copyright 2013 Elsevier)

Fig. 34

(Reprinted with permission of Ref. [105]. Copyright 2013 Elsevier)

Fig. 35

(Reprinted with permission of Ref. [214]. Copyright 2013 Elsevier)

Fig. 36

(Reproduced with permission of Ref. [115]. Copyright 2013 Elsevier)

Fig. 37

(Reproduced with permission of Ref. [66]. Copyright 2013 RSC)

Fig. 38

(Reproduced with permission of Ref. [173]. Copyright 2016 RSC)


  1. 1.

    A. Douglas, R. Carter, L. Oakes, K. Share, A. P. Cohn, and C. L. Pint (2015). ACS Nano9, 11156.

    CAS  PubMed  Google Scholar 

  2. 2.

    W. Liu, L. Xu, X. Li, C. Shen, S. Rashid, Y. Wen, W. Liu, and X. Wu (2015). RSC Adv.5, 2449.

    CAS  Google Scholar 

  3. 3.

    Y. C. Wang, D. Y. Wang, Y. T. Jiang, H. A. Chen, C. C. Chen, K. C. Ho, H. L. Chou, and C. W. Chen (2013). Angew. Chemie Int. Ed.52, 6694.

    CAS  Google Scholar 

  4. 4.

    D. Jasion, J. M. Barforoush, Q. Qiao, Y. Zhu, S. Ren, and K. C. Leonard (2015). ACS Catal.5, 6653.

    CAS  Google Scholar 

  5. 5.

    J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray (2011). Energy Environ. Sci.4, 3573.

    CAS  Google Scholar 

  6. 6.

    R. Balachandar, P. Gurumoorthy, N. Karmegam, H. Barabadi, R. Subbaiya, K. Anand, P. Boomi, and M. Saravanan (2019). J. Clust. Sci..

    Article  Google Scholar 

  7. 7.

    A. Khatua, E. Priyadarshini, P. Rajamani, A. Patel, J. Kumar, A. Naik, M. Saravanan, H. Barabadi, A. Prasad, L. Ghosh, B. Paul, and R. Meena (2019). J. Clust. Sci..

    Article  Google Scholar 

  8. 8.

    H. Barabadi, B. Tajani, M. Moradi, K. D. Kamali, R. Meena, S. Honary, M. A. Mahjoub, and M. Saravanan (2019). J. Clust. Sci.30, 843.

    CAS  Google Scholar 

  9. 9.

    K. Mallikarjuna, M. K. Kumar, B. V. S. Reddy, and H. Kim (2019). J. Clust. Sci.30, 449.

    CAS  Google Scholar 

  10. 10.

    H. Barabadi, M. A. Mahjoub, B. Tajani, A. Ahmadi, Y. Junejo, and M. Saravanan (2019). J. Clust. Sci.30, 259.

    CAS  Google Scholar 

  11. 11.

    H. Barabadi, H. Vahidi, K. D. Kamali, M. Rashedi, O. Hosseini, A. R. G. Ghomi, and M. Saravanan (2019). J. Clust. Sci..

    Article  Google Scholar 

  12. 12.

    K. Kanagamani, P. Muthukrishnan, K. Shankar, A. Kathiresan, H. Barabadi, and M. Saravanan (2019). J. Clust. Sci..

    Article  Google Scholar 

  13. 13.

    P. Boomi, G. P. Poorani, S. Palanisamy, S. Selvam, G. Ramanathan, S. Ravikumar, H. Barabadi, H. G. Prabu, J. Jeyakanthan, and M. Saravanan (2019). J. Clust. Sci.30, 715.

    CAS  Google Scholar 

  14. 14.

    C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed (2005). Chem. Rev.105, 1025.

    CAS  PubMed  Google Scholar 

  15. 15.

    X. Chen, Y. Lou, S. Dayal, X. Qiu, R. Krolicki, C. Burda, C. Zhao, and J. Becker (2005). J. Nanosci. Nanotechnol.5, 1408.

    CAS  PubMed  Google Scholar 

  16. 16.

    B. Bhushan (ed.) Springer handbook nanotechnology (Springer, Berlin, 2004), pp. 763–787.

    Google Scholar 

  17. 17.

    M. Saravanan, T. Asmalash, A. Gebrekidan, D. Gebreegziabiher, T. Araya, H. Hilekiros, H. Barabadi, and K. Ramanathan (2018). Pharm. Nanotechnol.6, 17.

    CAS  PubMed  Google Scholar 

  18. 18.

    J. Guo, S. Liang, Y. Shi, B. Li, C. Hao, X. Wang, and T. Ma (2015). RSC Adv.5, 72553.

    CAS  Google Scholar 

  19. 19.

    A. Tian, Q. Xu, X. Shi, H. Yang, X. Xue, J. You, X. Wang, C. Dong, X. Yan, and H. Zhou (2015). RSC Adv.5, 62724.

    CAS  Google Scholar 

  20. 20.

    C. Di Giovanni, W.-A. Wang, S. Nowak, J.-M. Grenèche, H. Lecoq, L. Mouton, M. Giraud, and C. Tard (2014). ACS Catal.4, 681.

    Google Scholar 

  21. 21.

    J. B. Goodenough (1978). Mater. Res. Bull.13, 1305.

    CAS  Google Scholar 

  22. 22.

    L. Labiadh, M. A. Oturan, M. Panizza, N. B. Hamadi, and S. Ammar (2015). J. Hazard. Mater.297, 34.

    CAS  PubMed  Google Scholar 

  23. 23.

    Y. Zhang, H. P. Tran, I. Hussain, Y. Zhong, and S. Huang (2015). Chem. Eng. J.279, 396.

    CAS  Google Scholar 

  24. 24.

    S. Nakamura and A. Yamamoto (2001). Sol. Energy Mater. Sol. Cells65, 79.

    CAS  Google Scholar 

  25. 25.

    H. A. Macpherson and C. R. Stoldt (2012). ACS Nano6, 8940.

    CAS  PubMed  Google Scholar 

  26. 26.

    J. A. Darr, J. Zhang, N. M. Makwana, and X. Weng (2017). Chem. Rev.117, 11125.

    CAS  PubMed  Google Scholar 

  27. 27.

    E. T. Allen, J. L. Crenshaw, J. Johnston, and E. S. Larsen (1912). Am. J. Sci. Ser. sV33, 169.

    CAS  Google Scholar 

  28. 28.

    K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology (William Andrew Elsevier, 2013).

  29. 29.

    R. Wu, Y. F. Zheng, X. G. Zhang, Y. F. Sun, J. B. Xu, and J. K. Jian (2004). J. Cryst. Growth266, 523.

    CAS  Google Scholar 

  30. 30.

    X. Qiu, M. Liu, T. Hayashi, M. Miyauchi, and K. Hashimoto (2013). Chem. Commun.49, 1232.

    CAS  Google Scholar 

  31. 31.

    L. Zhu, B. Richardson, J. Tanumihardja, and Q. Yu (2012). CrystEngComm14, 4188.

    CAS  Google Scholar 

  32. 32.

    J. Zou and J. C. Gao Materials research (Trans Tech Publications, Zürich, 2009), pp. 459–462.

    Google Scholar 

  33. 33.

    Y. Wang, X. Qian, W. Zhou, H. Liao, and S. Cheng (2014). RSC Adv.4, 36597.

    CAS  Google Scholar 

  34. 34.

    P. Namanu, M. Jayalakshmi, and K. U. Bhat (2015). J. Mater. Sci. Mater. Electron.26, 8534.

    CAS  Google Scholar 

  35. 35.

    A. Layek, S. Middya, and P. P. Ray (2013). J. Mater. Sci. Mater. Electron.24, 3749.

    CAS  Google Scholar 

  36. 36.

    G. Kaur, B. Singh, P. Singh, K. Singh, A. Thakur, M. Kumar, R. Bala, and A. Kumar (2017). Chem. Sel.2, 2166.

    CAS  Google Scholar 

  37. 37.

    A. Akhoondi, M. Aghaziarati, and N. Khandan (2013). Appl. Nanosci.3, 417.

    CAS  Google Scholar 

  38. 38.

    D. W. Wang, Q. H. Wang, and T. M. Wang (2010). CrystEngComm12, 755.

    CAS  Google Scholar 

  39. 39.

    P. Kush, S. Deka, and N. C. Mehra (2013). Sci. Adv. Mater. Sci. Adv. Mater.5, 788.

    CAS  Google Scholar 

  40. 40.

    X. Feng, X. He, W. Pu, C. Jiang, and C. Wan (2007). Ionics13, 375.

    CAS  Google Scholar 

  41. 41.

    J. Xia, J. Jiao, B. Dai, W. Qiu, S. He, W. Qiu, P. Shen, and L. Chen (2013). RSC Adv.3, 6132.

    CAS  Google Scholar 

  42. 42.

    S. Middya, A. Layek, A. Dey, and P. P. Ray (2014). J. Mater. Sci. Technol.30, 770.

    CAS  Google Scholar 

  43. 43.

    Z. T. Yang, X. J. Liu, J. S. Liu, and X. L. Feng Micro-nano technology. XIV (Trans Tech Publications, Zürich, 2013), pp. 136–140.

    Google Scholar 

  44. 44.

    Z. Yang, X. Liu, X. Feng, Y. Cui, and X. Yang (2014). J. Appl. Electrochem.44, 1075.

    CAS  Google Scholar 

  45. 45.

    W. Liu, Y. Wang, Z. Ai, L. Zhang, and A. C. S. Appl (2015). Mater. Interfaces7, 28534.

    CAS  Google Scholar 

  46. 46.

    Y. Liang, P. Bai, J. Zhou, T. Wang, B. Luo, and S. Zheng (2016). CrystEngComm18, 6262.

    CAS  Google Scholar 

  47. 47.

    H. Duan, Y. F. Zheng, Y. Z. Dong, X. G. Zhang, and Y. F. Sun (2004). Mater. Res. Bull.39, 1861.

    CAS  Google Scholar 

  48. 48.

    D. Zhang, X. L. Wang, Y. J. Mai, X. H. Xia, C. D. Gu, and J. P. Tu (2012). J. Appl. Electrochem.42, 263.

    CAS  Google Scholar 

  49. 49.

    X. Chen, Z. Wang, X. Wang, J. Wan, J. Liu, and Y. Qian (2005). Inorg. Chem.44, 951.

    CAS  PubMed  Google Scholar 

  50. 50.

    Y. Hu, Z. Zheng, H. Jia, Y. Tang, and L. Zhang (2008). J. Phys. Chem. C112, 13037.

    CAS  Google Scholar 

  51. 51.

    C. Wadia, Y. Wu, S. Gul, S. K. Volkman, J. Guo, and A. P. Alivisatos (2009). Chem. Mater.21, 2568.

    CAS  Google Scholar 

  52. 52.

    S. Liu, J. Wu, P. Yu, Q. Ding, Z. Zhou, H. Li, C. Lai, Y.-L. Chueh, and Z. M. Wang (2014). Nanoscale Res. Lett.9, 549.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    B. Yuan, W. Luan, and S. Tu (2015). Mater. Lett.142, 160.

    CAS  Google Scholar 

  54. 54.

    B. Yuan, W. Luan, S. Tu, and J. Wu (2015). New J. Chem.39, 3571.

    CAS  Google Scholar 

  55. 55.

    G. Kaur, B. Singh, P. Singh, M. Kaur, K. K. Buttar, K. Singh, A. Thakur, R. Bala, M. Kumar, and A. Kumar (2016). RSC Adv.6, 99120.

    CAS  Google Scholar 

  56. 56.

    J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon (2007). Angew. Chemie Int. Ed.46, 4630.

    CAS  Google Scholar 

  57. 57.

    K. P. Bhandari, P. J. Roland, T. Kinner, Y. Cao, H. Choi, S. Jeong, and R. J. Ellingson (2015). J. Mater. Chem. A3, 6853.

    CAS  Google Scholar 

  58. 58.

    A. Dubey, S. Singh, B. Tulachan, M. Roy, G. Srivastava, D. Philip, S. Sarkar, and M. Das (2016). RSC Adv.6, 16859.

    CAS  Google Scholar 

  59. 59.

    M. Walter, T. Zund, and M. V. Kovalenko (2015). Nanoscale7, 9158.

    CAS  PubMed  Google Scholar 

  60. 60.

    N. T. N. Truong, T. P. N. Nguyen, V. T. H. Pham, K. T. Trinh, S. Lee, and C. Park (2015). Jpn. J. Appl. Phys.54, 45001.

    Google Scholar 

  61. 61.

    L. Zhu, B. J. Richardson, and Q. Yu (2014). Nanoscale6, 1029.

    CAS  PubMed  Google Scholar 

  62. 62.

    L. Zhu, B. J. Richardson, and Q. Yu (2015). Chem. Mater.27, 3516.

    CAS  Google Scholar 

  63. 63.

    M. Gong, A. Kirkeminde, and S. Ren (2013). Sci. Rep.3, 2092.

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    H. Ge, L. Hai, R. R. Prabhakar, L. Y. Ming, and T. Sritharan (2014). RSC Adv.4, 16489.

    CAS  Google Scholar 

  65. 65.

    H. T. Kim, T. P. N. Nguyen, C. D. Kim, and C. Park (2014). Mater. Chem. Phys.2, 1095.

    Google Scholar 

  66. 66.

    A. Kirkeminde and S. Ren (2013). J. Mater. Chem. A1, 49.

    CAS  Google Scholar 

  67. 67.

    J. M. Lucas, C. C. Tuan, S. D. Lounis, D. K. Britt, R. Qiao, W. Yang, A. Lanzara, and A. P. Alivisatos (2013). Chem. Mater.25, 1615.

    CAS  Google Scholar 

  68. 68.

    M. Gong, A. Kirkeminde, N. Kumar, H. Zhao, and S. Ren (2013). Chem. Commun.49, 9260.

    CAS  Google Scholar 

  69. 69.

    Y. Bai, J. Yeom, M. Yang, S.-H. Cha, K. Sun, and N. A. Kotov (2013). J. Phys. Chem. C117, 2567.

    CAS  Google Scholar 

  70. 70.

    S. C. Hsiao, C. M. Hsu, S. Y. Chen, Y. H. Perng, Y. L. Chueh, L. J. Chen, and L. H. Chou (2012). Mater. Lett.75, 152.

    CAS  Google Scholar 

  71. 71.

    A. Kirkeminde, B. A. Ruzicka, R. Wang, S. Puna, H. Zhao, S. Ren, and A. C. S. Appl (2012). Mater. Interfaces4, 1174.

    CAS  Google Scholar 

  72. 72.

    A. Kirkeminde, R. Scott, and S. Ren (2012). Nanoscale4, 7649.

    CAS  PubMed  Google Scholar 

  73. 73.

    Y. Bi, Y. Yuan, C. L. Exstrom, S. A. Darveau, and J. Huang (2011). Nano Lett.11, 4953.

    CAS  PubMed  Google Scholar 

  74. 74.

    B. Mao, Q. Dong, C. L. Exstrom, and J. Huang (2014). Thin Solid Films562, 361.

    CAS  Google Scholar 

  75. 75.

    W. Li, T. Dittrich, F. Jäckel, and J. Feldmann (2014). Small10, 1194.

    CAS  PubMed  Google Scholar 

  76. 76.

    M. A. Khan, J. C. Sarker, S. Lee, S. C. Mangham, and M. O. Manasreh (2014). Mater. Chem. Phys.148, 1022.

    Google Scholar 

  77. 77.

    M. A. Khan and Y. M. Kang (2014). Mater. Lett.132, 273.

    Google Scholar 

  78. 78.

    M. A. Khan, M. O. Manasreh, and Y.-M. Kang (2014). Mater. Lett.126, 181.

    Google Scholar 

  79. 79.

    S. C. Mangham, M. A. Khan, M. Benamara, and M. O. Manasreh (2013). Mater. Lett.97, 144.

    CAS  Google Scholar 

  80. 80.

    B. Killic, J. Roehling, and O. T. Özmen (2013). J. Nanoelectron. Optoelectron.8, 260.

    Google Scholar 

  81. 81.

    D. Y. Wang, Y. T. Jiang, C. C. Lin, S. S. Li, Y. T. Wang, C. C. Chen, and C. W. Chen (2012). Adv. Mater.24, 3415.

    CAS  PubMed  Google Scholar 

  82. 82.

    L. K. Ganta, T. P. Dhakal, S. Rajendran, and C. R. Westgate (2012). MRS Proc.7, 1447.

  83. 83.

    C. W. Lin, D. Y. Wang, Y. T. Wang, C. C. Chen, Y. J. Yang, and Y. F. Chen (2011). Sol. Energy Mater. Sol. Cells95, 1107.

    CAS  Google Scholar 

  84. 84.

    W. Li, M. Doblinger, A. Vaneski, A. L. Rogach, F. Jackel, and J. Feldmann (2011). J. Mater. Chem.21, 17946.

    CAS  Google Scholar 

  85. 85.

    J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, and M. Law (2011). J. Am. Chem. Soc.133, 716.

    CAS  PubMed  Google Scholar 

  86. 86.

    F. Jiang, L. T. Peckler, and A. J. Muscat (2015). Cryst. Growth Des.15, 3565.

    CAS  Google Scholar 

  87. 87.

    R. H. Sillitoe (2010). Econ. Geol.105, 3.

    CAS  Google Scholar 

  88. 88.

    X. Zhang, T. Scott, T. Socha, D. Nielsen, M. Manno, M. Johnson, Y. Yan, Y. Losovyj, P. Dowben, E. S. Aydil, C. Leighton, and A. C. S. Appl (2015). Mater. Interfaces7, 14130.

    CAS  Google Scholar 

  89. 89.

    L. Li, M. Caban-Acevedo, S. N. Girard, and S. Jin (2014). Nanoscale6, 2112.

    CAS  PubMed  Google Scholar 

  90. 90.

    Q. H. Huang, T. Ling, S. Z. Qiao, and X. W. Du (2013). J. Mater. Chem. A1, 11828.

    CAS  Google Scholar 

  91. 91.

    X. Zhang, M. Manno, A. Baruth, M. Johnson, E. S. Aydil, and C. Leighton (2013). ACS Nano7, 2781.

    CAS  PubMed  Google Scholar 

  92. 92.

    M. Cabán-Acevedo, D. Liang, K. S. Chew, J. P. DeGrave, N. S. Kaiser, and S. Jin (2013). ACS Nano7, 1731.

    PubMed  Google Scholar 

  93. 93.

    B. Chakraborty, B. Show, S. Jana, B. C. Mitra, S. K. Maji, B. Adhikary, N. Mukherjee, and A. Mondal (2013). Electrochim. Acta94, 7.

    CAS  Google Scholar 

  94. 94.

    R. Morrish, R. Silverstein, and C. A. Wolden (2012). J. Am. Chem. Soc.134, 17854.

    CAS  PubMed  Google Scholar 

  95. 95.

    L. Y. Huang, L. Meng, and M. A. C. Mater (2010). Chem. Phys.124, 413.

    CAS  Google Scholar 

  96. 96.

    B. Ouertani, J. Ouerfelli, M. Saadoun, B. Bessaïs, H. Ezzaouia, and J. C. Bernède (2005). Mater. Charact.54, 431.

    CAS  Google Scholar 

  97. 97.

    L. Meng, Y. H. Liu, and L. Tian (2003). J. Cryst. Growth J. Cryst. Growth253, 530.

    CAS  Google Scholar 

  98. 98.

    M. Wang, C. Xing, K. Cao, L. Zhang, J. Liu, and L. Meng (2014). J. Mater. Chem. A2, 9496.

    CAS  Google Scholar 

  99. 99.

    F. Wang, L. Huang, Z. Luan, J. Huang, L. Meng, and M. A. C. Mater (2012). Chem. Phys.132, 505.

    CAS  Google Scholar 

  100. 100.

    Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, and J. Chen (2015). Energy Environ. Sci.8, 1309.

    CAS  Google Scholar 

  101. 101.

    D. Zhang, G. Wu, J. Xiang, J. Jin, Y. Cai, and G. Li (2013). Mater. Sci. Eng. B178, 483.

    CAS  Google Scholar 

  102. 102.

    H. T. Liao, Y. R. Wang, J. Wang, X. F. Qian, and S. Q. Cheng Advances Technology Manufature Engineering Materials (Trans Tech Publications, Zürich, 2013), pp. 677–681.

    Google Scholar 

  103. 103.

    S. Kar and S. Chaudhuri (2005). Mater. Lett.59, 289.

    CAS  Google Scholar 

  104. 104.

    Y. Chen, Y. Zheng, X. Zhang, Y. Sun, and Y. Dong (2005). Sci. China Ser. G Phys. Mech. Astron.48, 188.

    CAS  Google Scholar 

  105. 105.

    S. Liu, M. Li, S. Li, H. Li, and L. Yan (2013). Appl. Surf. Sci.268, 213.

    CAS  Google Scholar 

  106. 106.

    N. E’jazi and M. Aghaziarati (2012). Adv. Powder Technol.23, 352.

    Google Scholar 

  107. 107.

    H. Ma, Z. G. Zou, Y. Wu, F. Long, H. J. Yu, and C. Y. Xie Applied engineering materials (Trans Tech Publications, Zürich, 2011), pp. 1327–1330.

    Google Scholar 

  108. 108.

    S. Kar and S. Chaudhuri (2004). Chem. Phys. Lett.398, 22.

    CAS  Google Scholar 

  109. 109.

    Q. Yitai, Q. Xuefeng, and X. Yi (2001). Mater. Lett.48, 109.

    Google Scholar 

  110. 110.

    B.-B. Yu, X. Zhang, Y. Jiang, J. Liu, L. Gu, J.-S. Hu, and L.-J. Wan (2015). J. Am. Chem. Soc.137, 2211.

    CAS  PubMed  Google Scholar 

  111. 111.

    D. Wang, Q. Wang, T. Wang, M. Wu, and J. Chen (2011). Ionics (Kiel).17, 163.

    CAS  Google Scholar 

  112. 112.

    T. S. Yoder, J. E. Cloud, G. J. Leong, D. F. Molk, M. Tussing, J. Miorelli, C. Ngo, S. Kodambaka, M. E. Eberhart, R. M. Richards, and Y. Yang (2014). Chem. Mater.26, 6743.

    CAS  Google Scholar 

  113. 113.

    W. L. Liu, X. H. Rui, H. T. Tan, C. Xu, Q. Y. Yan, and H. H. Hng (2014). RSC Adv.4, 48770.

    CAS  Google Scholar 

  114. 114.

    L. Samad, M. Cabán-Acevedo, M. J. Shearer, K. Park, R. J. Hamers, and S. Jin (2015). Chem. Mater.27, 3108.

    CAS  Google Scholar 

  115. 115.

    S. K. Bhar, S. Jana, A. Mondal, and N. Mukherjee (2013). J. Colloid Interface Sci.393, 286.

    CAS  PubMed  Google Scholar 

  116. 116.

    G. Willeke, R. Dasbach, B. Sailer, and E. Bucher (1992). Thin Solid Films213, 271.

    CAS  Google Scholar 

  117. 117.

    M. Birkholz, D. Lichtenberger, C. Höpfner, and S. Fiechter (1992). Sol. Energy Mater. Sol. Cells27, 243.

    CAS  Google Scholar 

  118. 118.

    D. Lichtenberger, K. Ellmer, R. Schieck, and S. Fiechter (1993). Appl. Surf. Sci.70–71, 583.

    Google Scholar 

  119. 119.

    D. Lichtenberger, K. Ellmer, R. Schieck, S. Fiechter, and H. Tributsch (1994). Thin Solid Films246, 6.

    CAS  Google Scholar 

  120. 120.

    A. Baruth, M. Manno, D. Narasimhan, A. Shankar, X. Zhang, M. Johnson, E. S. Aydil, and C. Leighton (2012). J. Appl. Phys.112, 054328-13.

    Google Scholar 

  121. 121.

    A. Mars, H. Essaidi, and J. Ouerfelli (2016). JALCOM J. Alloy. Compd.688, 553.

    CAS  Google Scholar 

  122. 122.

    J. Wu, Y. Liang, P. Bai, S. Zheng, and L. Chen (2015). RSC Adv.5, 65575.

    CAS  Google Scholar 

  123. 123.

    D. Zhang, J. P. Tu, J. Y. Xiang, Q. Y. Qiao, H. X. Xia, X. L. Wang, and C. D. Gu (2011). EA Electrochim. Acta.56, 9980.

    CAS  Google Scholar 

  124. 124.

    P. P. Chin, J. Ding, J. B. Yi, and B. H. Liu (2005). J. Alloy. Compd.390, 255.

    CAS  Google Scholar 

  125. 125.

    M. L. Li, Q. Z. Yao, G. T. Zhou, X. F. Qu, C. F. Mu, and S. Q. Fu (2011). CrystEngComm13, 5936.

    CAS  Google Scholar 

  126. 126.

    E. J. Kim and B. Batchelor (2009). Mater. Res. Bull.44, 1553.

    CAS  Google Scholar 

  127. 127.

    L. R. Walker, G. K. Wertheim, and V. Jaccarino (1961). Phys. Rev. Lett.6, 98.

    CAS  Google Scholar 

  128. 128.

    S. Miyahara and T. Teranishi (1968). J. Appl. Phys.39, 896.

    CAS  Google Scholar 

  129. 129.

    F. Hulliger and E. Mooser (1965). Prog. Solid State Chem.2, 330.

    CAS  Google Scholar 

  130. 130.

    R. B. L. Neel (1953). Competus Rendus Chim.237, 444.

    CAS  Google Scholar 

  131. 131.

    P. A. Montano and M. S. Seehra (1976). Solid State Commun.20, 897.

    CAS  Google Scholar 

  132. 132.

    W. Kerler, W. Neuwirth, E. Fluck, P. Kuhn, and B. Zimmermann (1963). Zeitschrift Für Phys.173, 321.

    CAS  Google Scholar 

  133. 133.

    A. A. Temperley and H. W. Lefevre (1966). J. Phys. Chem. Solids27, 85.

    CAS  Google Scholar 

  134. 134.

    Y. N. Li, S. Wang, T. Wang, R. Gao, C. Y. Geng, Y. W. Li, J. Wang, and H. Jiao (2013). ChemPhysChem14, 1182.

    CAS  PubMed  Google Scholar 

  135. 135.

    X. Wu, X. Xie, and Y. Cao (2016). Trans. Nonferrous Met. Soc. China26, 3238.

    CAS  Google Scholar 

  136. 136.

    A. Schlegel and P. Wachter (1976). J. Phys. C Solid State Phys.9, 3363.

    CAS  Google Scholar 

  137. 137.

    T. A. Bither, R. J. Bouchard, W. H. Cloud, P. C. Donohue, and W. J. Siemons (1968). Inorg. Chem.7, 2208.

    CAS  Google Scholar 

  138. 138.

    H. S. Jarrett, W. H. Cloud, R. J. Bouchard, S. R. Butler, C. G. Frederick, and J. L. Gillson (1968). Phys. Rev. Lett.21, 617.

    CAS  Google Scholar 

  139. 139.

    M. Dekker and J. B. Goodenough (1976). Prog. Solid State Chem.10, 207.

    Google Scholar 

  140. 140.

    B. Kolb and A. M. Kolpak (2013). Phys. Rev. B88, 235208.

    Google Scholar 

  141. 141.

    P. Xiao, X.-L. Fan, L.-M. Liu, and W.-M. Lau (2014). Phys. Chem. Chem. Phys.16, 24466.

    CAS  PubMed  Google Scholar 

  142. 142.

    D. W. Bullett (1982). J. Phys. C Solid State Phys.15, 6163.

    CAS  Google Scholar 

  143. 143.

    J. A. Tossell, D. J. Vaughan, and J. K. Burdett (1981). Phys. Chem. Miner.7, 177.

    CAS  Google Scholar 

  144. 144.

    M. S. Schmokel, L. Bjerg, S. Cenedese, M. R. V. Jorgensen, Y.-S. Chen, J. Overgaard, and B. B. Iversen (2014). Chem. Sci.5, 1408.

    CAS  Google Scholar 

  145. 145.

    D. A. Kitchaev and G. Ceder (2016). Nat. Commun.7, 13799.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    S. Ushioda (1972). Solid State Commun.10, 307.

    CAS  Google Scholar 

  147. 147.

    E. Bastola, K. P. Bhandari, and R. J. Ellingson (2017). J. Mater. Chem. C5, 4996.

    CAS  Google Scholar 

  148. 148.

    S. Shukla, G. Xing, H. Ge, R. R. Prabhakar, S. Mathew, Z. Su, V. Nalla, T. Venkatesan, N. Mathews, T. Sritharan, T. C. Sum, and Q. Xiong (2016). ACS Nano10, 4431.

    CAS  PubMed  Google Scholar 

  149. 149.

    D. Liang, M. Cabán-Acevedo, N. S. Kaiser, and S. Jin (2014). Nano Lett.14, 6754.

    CAS  PubMed  Google Scholar 

  150. 150.

    M. Limpinsel, N. Farhi, N. Berry, J. Lindemuth, C. L. Perkins, Q. Lin, and M. Law (2014). Energy Environ. Sci.7, 1974.

    CAS  Google Scholar 

  151. 151.

    F. W. Herbert (2013). Surf. Sci.618, 53.

    CAS  Google Scholar 

  152. 152.

    B. Mao, Q. Dong, Z. Xiao, C. L. Exstrom, S. A. Darveau, T. E. Webber, B. D. Lund, H. Huang, Z. Kang, and J. Huang (2013). J. Mater. Chem. A1, 12060.

    CAS  Google Scholar 

  153. 153.

    K. Büker, N. AlonsoVante, and H. Tributsch (1992). J. Appl. Phys.72, 5721.

    Google Scholar 

  154. 154.

    S. Guo, D. P. Young, R. T. Macaluso, D. A. Browne, N. L. Henderson, J. Y. Chan, L. L. Henry, and J. F. DiTusa (2010). Phys. Rev. B81, 144424.

    Google Scholar 

  155. 155.

    J. Hu, Y. Zhang, M. Law, and R. Wu (2012). J. Am. Chem. Soc.134, 13216.

    CAS  PubMed  Google Scholar 

  156. 156.

    W. Qiu, J. Xia, H. Zhong, S. He, S. Lai, and L. Chen (2014). EA Electrochim. Acta.137, 197.

    CAS  Google Scholar 

  157. 157.

    M. S. Faber, M. A. Lukowski, Q. Ding, N. S. Kaiser, and S. Jin (2014). J. Phys. Chem. C118, 21347.

    CAS  Google Scholar 

  158. 158.

    Y. Fan, D. Wang, D. Han, Y. Ma, S. Ni, Z. Sun, X. Dong, and L. Niu (2017). Nanoscale9, 5887.

    CAS  PubMed  Google Scholar 

  159. 159.

    T. Kinner, K. P. Bhandari, E. Bastola, B. M. Monahan, N. O. Haugen, P. J. Roland, T. P. Bigioni, and R. J. Ellingson (2016). J. Phys. Chem. C120, 5706.

    CAS  Google Scholar 

  160. 160.

    D. Y. Wang, C. H. Li, S. S. Li, T. R. Kuo, C. M. Tsai, T. R. Chen, Y. C. Wang, C. W. Chen, and C. C. Chen (2016). Sci. Rep.6, 20397.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    M. Zhang, B. Chen, H. Tang, G. Tang, C. Li, L. Chen, H. Zhang, and Q. Zhang (2015). RSC Adv.5, 1417.

    CAS  Google Scholar 

  162. 162.

    H. Xue, Y. W. Denis, J. Qing, X. Yang, J. Xu, Z. Li, M. Sun, W. Kang, Y. Tang, and C. S. Lee (2015). J. Mater. Chem. A3, 7945.

    CAS  Google Scholar 

  163. 163.

    X. Wen, X. Wei, L. Yang, and P. K. Shen (2015). J. Mater. Chem. A3, 2090.

    CAS  Google Scholar 

  164. 164.

    Q. Wang, C. Guo, Y. Zhu, J. He, and H. Wang (2018). Nano-Micro Lett.10, 30.

    Google Scholar 

  165. 165.

    D. Y. Wang, M. Gong, H. L. Chou, C. J. Pan, H. A. Chen, Y. Wu, M. C. Lin, M. Guan, J. Yang, C. W. Chen, Y. L. Wang, B. J. Hwang, C. C. Chen, and H. Dai (2015). J. Am. Chem. Soc.137, 1587.

    CAS  PubMed  Google Scholar 

  166. 166.

    D. T. Tran, H. Dong, S. D. Walck, and S. S. Zhang (2015). RSC Adv.5, 87847.

    CAS  Google Scholar 

  167. 167.

    J. R. Tan, J. Yang, Y. Zhao, F. P. Hu, and K. Wang (2016). Chem. Commun.52, 986.

    CAS  Google Scholar 

  168. 168.

    S. Khalid, M. A. Malik, D. Lewis, P. Kevin, E. Ahmed, Y. Khan, and P. O’Brien (2015). J. Mater. Chem. C3, 12068.

    CAS  Google Scholar 

  169. 169.

    Z. H. Diao, X. R. Xu, D. Jiang, G. Li, J. J. Liu, L. J. Kong, and L. Z. Zuo (2017). J. Hazard. Mater.327, 108.

    CAS  PubMed  Google Scholar 

  170. 170.

    C. H. Ho, C. E. Huang, and C. C. Wu (2004). J. Cryst. Growth270, 535.

    CAS  Google Scholar 

  171. 171.

    Z. Tan, L. Sharma, R. Kakkar, T. Meng, Y. Jiang, and M. Cao (2019). Inorg. Chem..

    Article  PubMed  Google Scholar 

  172. 172.

    Y. Liu, W. Wang, Q. Chen, C. Xu, D. Cai, and H. Zhan (2019). Inorg. Chem.58, 1330.

    CAS  PubMed  Google Scholar 

  173. 173.

    R. Kumar, J. Rashid, and M. A. Barakat (2014). RSC Adv.4, 38334.

    CAS  Google Scholar 

  174. 174.

    A. M. Sajimol, P. B. Anand, K. M. Anilkumar, and S. Jayalekshmi (2013). Polym. Int.62, 670.

    CAS  Google Scholar 

  175. 175.

    H. T. B. Thomas, K. Ellmer, M. Mfiller, C. Hopfner, and S. Fiechter (1997). J. Cryst. Growth170, 808.

    CAS  Google Scholar 

  176. 176.

    G. Kaur, P. Devi, M. Kumar, A. Thakur, R. Bala, and A. Kumar (2017). Phys. Chem. Chem. Phys.19, 32412.

    CAS  PubMed  Google Scholar 

  177. 177.

    A. Ennaoui, S. Fiechter, W. Jaegermann, and H. Tributsch (1986). J. Electrochem. Soc.133, 97.

    CAS  Google Scholar 

  178. 178.

    C. Wadia, A. P. Alivisatos, and D. M. Kammen (2009). Environ. Sci. Technol.43, 2072.

    CAS  PubMed  Google Scholar 

  179. 179.

    D. J. Vaughan, Cambridge Earth Science Series, Cambridge 493, (1978).

  180. 180.

    E. Strauss, G. Ardel, V. Livshits, L. Burstein, D. Golodnitsky, and E. Peled (2000). J. Power Sources88, 206.

    CAS  Google Scholar 

  181. 181.

    P. Gao, Y. Xie, L. Ye, Y. Chen, and Q. Guo (2006). Cryst. Growth Des.6, 583.

    CAS  Google Scholar 

  182. 182.

    I.-S. Ahn, D. W. Kim, D. K. Kang, and D.-K. Park (2008). Met. Mater. Int.14, 65.

    CAS  Google Scholar 

  183. 183.

    K. B. A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, C. Höpfner, H. Tributsch, and M. Bronold (1993). Sol. Energy Mater. Sol. Cells29, 289.

    CAS  Google Scholar 

  184. 184.

    P. K. Abraitis, R. A. D. Pattrick, and D. J. Vaughan (2005). Int. J. Miner. Process.74, 41.

    Google Scholar 

  185. 185.

    D. Ginley, M. A. Green, and R. Collins (2008). MRS Bull.33, 355.

    CAS  Google Scholar 

  186. 186.

    H. Barabadi, M. Najafi, H. Samadian, A. Azarnezhad, H. Vahidi, A. M. Mahjoub, M. Koohiyan, and A. Ahmadi (2019). Medicina.55, 439.

    PubMed Central  Google Scholar 

  187. 187.

    K. Mortezaee, M. Najafi, H. Samadian, H. Barabadi, A. Azarnezhad, and A. Ahmadi (2019). Chem. Biol. Interact.312, 108814.

    CAS  PubMed  Google Scholar 

  188. 188.

    M. D. Archer and M. A. Green, Clean Electricity from Photovotaics (Imperial College Press, 2015).

  189. 189.

    I. J. Ferrer, J. R. Ares, and C. R. Sanchez (2003). Sol. Energy Mater. Sol. Cells76, 183.

    CAS  Google Scholar 

  190. 190.

    K. P. Bhandari, P. Koirala, N. R. Paudel, R. R. Khanal, A. B. Phillips, Y. Yan, R. W. Collins, M. J. Heben, and R. J. Ellingson (2015). Sol. Energy Mater. Sol. Cells140, 108.

    CAS  Google Scholar 

  191. 191.

    M. Wang, C. Chen, H. Qin, L. Zhang, Y. Fang, J. Liu, and L. Meng (2015). Adv. Mater. Interfaces2, 1500163.

    Google Scholar 

  192. 192.

    S. Shukla, N. H. Loc, P. P. Boix, T. M. Koh, R. R. Prabhakar, H. K. Mulmudi, J. Zhang, S. Chen, C. F. Ng, C. H. A. Huan, N. Mathews, T. Sritharan, and Q. Xiong (2014). ACS Nano8, 10597.

    CAS  PubMed  Google Scholar 

  193. 193.

    C. Song, S. Wang, W. Dong, X. Fang, J. Shao, J. Zhu, and X. Pan (2016). Sol. Energy133, 429.

    CAS  Google Scholar 

  194. 194.

    J. Xu, H. Xue, X. Yang, H. Wei, W. Li, Z. Li, W. Zhang, and C.-S. Lee (2014). Small10, 4754.

    CAS  PubMed  Google Scholar 

  195. 195.

    M. Zhou, J. He, L. Wang, S. Zhao, Q. Wang, S. Cui, X. Qin, and R. Wang (2018). Sol. Energy166, 71.

    CAS  Google Scholar 

  196. 196.

    B. Kilic, S. Turkdogan, A. Astam, O. C. Ozer, M. Asgin, H. Cebeci, D. Urk, and S. P. Mucur (2016). Sci. Rep.6, 27052.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197.

    B. Kilic, S. Turkdogan, O. C. Ozer, M. Asgin, O. Bayrakli, G. Surucu, A. Astam, and D. Ekinci (2016). Mater. Lett.185, 584.

    CAS  Google Scholar 

  198. 198.

    F. Goubard and G. Wantz (2014). Polym. Int.63, 1362.

    CAS  Google Scholar 

  199. 199.

    Y. Y. Lin, D. Y. Wang, H. C. Yen, H. L. Chen, C. C. Chen, C. M. Chen, C. Y. Tang, and C. W. Chen (2009). Nanotechnology20, 405207.

    PubMed  Google Scholar 

  200. 200.

    B. J. Richardson, L. Zhu, and Q. Yu (2013). Sol. Energy Mater. Sol. Cells116, 252.

    CAS  Google Scholar 

  201. 201.

    M. Nam, D. Choi, S. Kim, S. Lee, K. Lee, and S.-W. Kim (2014). J. Mater. Chem. A2, 9758.

    CAS  Google Scholar 

  202. 202.

    J. Xia, X. Lu, W. Gao, J. Jiao, H. Feng, and L. Chen (2011). Electrochim. Acta56, 6932.

    CAS  Google Scholar 

  203. 203.

    D. G. Moon, A. Cho, J. H. Park, S. Ahn, H. Kwon, Y. S. Cho, and S. Ahn (2014). J. Mater. Chem. A2, 17779.

    CAS  Google Scholar 

  204. 204.

    A. G. Ritchie, P. G. Bowles, and D. P. Scattergood (2004). P. J. Power Sources136, 276.

    CAS  Google Scholar 

  205. 205.

    H. J. Ahn, J. W. Choi, G. Cheruvally, J. H. Ahn, and K. W. Kim (2006). J. Power Sources163, 158.

    Google Scholar 

  206. 206.

    T. B. Kim, W. H. Jung, H. S. Ryu, K. W. Kim, J. H. Ahn, K. K. Cho, G. B. Cho, T. H. Nam, I. S. Ahn, and H. J. Ahn (2008). J. Alloys Compd.449, 304.

    CAS  Google Scholar 

  207. 207.

    D. Zhang, Y. J. Mai, J. Y. Xiang, X. H. Xia, Y. Q. Qiao, and J. P. Tu (2012). J. Power Sources217, 229.

    CAS  Google Scholar 

  208. 208.

    J. Liu, L. Liu, Z. Yuan, and C. Qiu (2013). Solid State Ionics241, 25.

    CAS  Google Scholar 

  209. 209.

    B. Dong, W. Ding, X. Wang, H. Peng, and Z. Peng (2013). Mater. Res. Bull.48, 4704.

    Google Scholar 

  210. 210.

    Y. Du, S. Wu, M. Huang, and X. Tian (2017). Chem. Eng. J.326, 257.

    CAS  Google Scholar 

  211. 211.

    Y. Shao-Horn, S. Osmialowski, and Q. C. Horn (2002). J. Electrochem. Soc.149, A1547.

    CAS  Google Scholar 

  212. 212.

    Y. J. Choi, J. H. Jeong, J. H. Ha, G. B. Cho, K. K. Cho, K. S. Ryu, and K. W. Kim (2010). Phys. Scr.2010, 14063.

    Google Scholar 

  213. 213.

    L. Montoro and J. M. Rosolen (2003). Solid State Ionics159, 233.

    CAS  Google Scholar 

  214. 214.

    A. Abdel-Wahab, D. S. Han, J. K. Song, and B. Batchelor (2013). J. Colloid Interface Sci.392, 311.

    PubMed  Google Scholar 

  215. 215.

    M. V. Morales-Gallardo, A. M. Ayala, M. Pal, M. A. C. Jacome, J. A. T. Antonio, and N. R. Mathews (2016). Chem. Phys. Lett.660, 93.

    CAS  Google Scholar 

  216. 216.

    G. Lee and M. Kang (2013). Curr. Appl. Phys.13, 1482.

    Google Scholar 

  217. 217.

    D. Wang, Q. Wang, and T. Wang (2010). CrystEngComm12, 3797.

    CAS  Google Scholar 

  218. 218.

    H. T. Kim, T. P. N. Nguyen, C.-D. Kim, and C. Park (2014). Mater. Chem. Phys.148, 1095.

    CAS  Google Scholar 

  219. 219.

    X. Shi, A. Tian, X. Xue, H. Yang, and Q. Xu (2015). Mater. Lett.141, 104.

    CAS  Google Scholar 

  220. 220.

    Y. Li, Z. Han, L. Jiang, Z. Su, F. Liu, Y. Lai, and Y. Liu (2014). J. Solgel Sci. Technol.72, 100.

    CAS  Google Scholar 

  221. 221.

    M. Cabán-Acevedo, M. S. Faber, Y. Tan, R. J. Hamers, and S. Jin (2012). Nano Lett.12, 1977.

    PubMed  Google Scholar 

  222. 222.

    B. V. da Amorim, F. J. Moura, E. A. Brocchi, M. J. Vieira, and M. T. Rupp (2012). Met. Mater. Trans B43, 781.

    CAS  Google Scholar 

  223. 223.

    D. Wan, Y. Wang, Z. Zhou, G. Yang, B. Wang, and L. Wei (2005). Mater. Sci. Eng. B122, 156.

    Google Scholar 

  224. 224.

    R. Wu, J. Jian, L. Tao, Y. Bian, J. Li, Y. Sun, J. Wang, and X. Y. Zeng (2010). Powder Diffr.25, 40–44.

    Google Scholar 

  225. 225.

    T. A. Yersak, H. A. Macpherson, S. C. Kim, V. D. Le, C. S. Kang, S. B. Son, Y. H. Kim, J. E. Trevey, K. H. Oh, C. Stoldt, and S. H. Lee (2013). Adv. Energy Mater.3, 120–127.

    CAS  Google Scholar 

Download references


The authors acknowledge the financial support from Board of Research in Nuclear Sciences, Department of Atomic Energy (DAE), India under Project No. 34/14/41/2014-BRNS. This work was supported by DST Project No. EMR/2016/002815.

Author information



Corresponding author

Correspondence to Akshay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Kaur, M., Thakur, A. et al. Recent Progress on Pyrite FeS2 Nanomaterials for Energy and Environment Applications: Synthesis, Properties and Future Prospects. J Clust Sci 31, 899–937 (2020).

Download citation


  • Iron pyrite
  • Solar cells
  • Environment remediation
  • Nanomaterials
  • Battery applications