Synthesis of Selenium Nanoparticles Using Probiotic Bacteria Lactobacillus acidophilus and Their Enhanced Antimicrobial Activity Against Resistant Bacteria


In the present study, nontoxic selenium nanoparticles were synthesized extracellularly using probiotic bacteria Lactobacillus acidophilus. The synthesized Lactobacillus acidophilus mediated selenium nanoparticles (LA-SeNPs) show the surface plasmon resonance (SPR) at 385 nm. The hydrodynamic radius of LA-SeNPs was found to be 34.13 nm along with polydispersity index (0.28) and zeta potential (+ 37.86 mV). TEM shows that the average diameter of LA-SeNPs is 2–15 nm. FTIR suggest that extracellular proteins present in bacterial culture were responsible for reduction and stabilization of Se ions to LA-SeNPs. The antibacterial activity of synthesized nanoparticles was studied against five different sensitive and resistant bacterial strains. The MIC90 for bacterial strains were in the range ± 1 to ± 10 µg/ml. The inhibition and degradation of bacterial biofilm were studied against all the tested strains. The synthesized nanoparticles were cyto-compatible against human HEK-293 normal cell lines shown by MTT assay.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    L. Wang, C. Hu, and L. Shao (2017). Int. J. Nanomed.12, 1227.

    CAS  Google Scholar 

  2. 2.

    M. N. Alekshunand and S. B. Levy (2007). Cell128, 1037.

    Google Scholar 

  3. 3.

    Y. N. Slavin, J. Asnis, U. O. Hafeli, and H. Bach (2017). J. Nanobiotechnol.15, 1.

    Google Scholar 

  4. 4.

    M. Saravanan, S. Arokiyaraj, T. Lakshmi, and A. Pugazhendhi (2018). Microb. Pathog.117, 68.

    CAS  PubMed  Google Scholar 

  5. 5.

    M. Saravanan, S. K. Barik, D. A. Mubarak, P. Prakash, and A. Pugazhendhi (2018). Microb. Pathog.116, 221.

    CAS  PubMed  Google Scholar 

  6. 6.

    B. Hosnedlova, M. Kepinska, S. Skalickova, C. Fernandez, B. Ruttkay-Nedecky, Q. Peng, and G. Bjorklund (2018). Int. J. Nanomed.13, 2107.

    CAS  Google Scholar 

  7. 7.

    D. Medina Cruz, G. Mi, and T. J. Webster (2018). J. Biomed. Mater. Res. A106, 1400.

    CAS  PubMed  Google Scholar 

  8. 8.

    A. Husen and K. S. Siddiqi (2014). J. Nanobiotechnol.12, 1.

    Google Scholar 

  9. 9.

    P. Bao, K. Q. Xiao, H. J. Wang, H. Xu, P. P. Xu, Y. Jia, and Y. G. Zhu (2016). Sci. Rep.6, 1.

    CAS  Google Scholar 

  10. 10.

    Y. Tan, Y. Wang, Y. Wang, D. Xu, Y. Huang, D. Wang, C. Rensing, and S. Zheng (2018). J. Hazard. Mater.359, 129.

    CAS  PubMed  Google Scholar 

  11. 11.

    D. Xu, L. Yang, Y. Wang, G. Wang, C. Rensing, and S. Zheng (2018). Sci. Rep.8, 1.

    Google Scholar 

  12. 12.

    H. Fernández-Llamosas, L. Castro, M. L. Blázquez, E. Díaz, and M. Carmona (2017). Sci. Rep.7, 1.

    Google Scholar 

  13. 13.

    C. Xu, Y. Guo, L. Qiao, L. Ma, Y. Cheng, and A. Roman (2018). Front. Microbiol.9, 1129.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    R. Avendaño, N. Chaves, P. Fuentes, E. Sanchez, J. I. Jiménez, and M. Chavarría (2016). Sci. Rep.6, 1.

    Google Scholar 

  15. 15.

    G. M. Khiralla and B. A. El-Deeb (2015). LWT Food Sci. Technol.63, 1001.

    CAS  Google Scholar 

  16. 16.

    S. Shoeibi and M. Mashreghi (2017). J. Trace Elem. Med. Biol.39, 135.

    CAS  PubMed  Google Scholar 

  17. 17.

    A. Presentato, E. Piacenza, M. Anikovskiy, M. Cappelletti, D. Zannoni, and R. J. Turner (2018). N. Biotechnol.41, 1.

    CAS  PubMed  Google Scholar 

  18. 18.

    T. Wang, L. Yang, B. Zhang, and J. Liu (2010). Colloids Surf. B Biointerfaces80, 94.

    CAS  PubMed  Google Scholar 

  19. 19.

    A. J. Kora (2018). Bioresour. Bioprocess.5, 1.

    Google Scholar 

  20. 20.

    W. Zhang, Z. Chen, H. Liu, L. Zhang, P. Gao, and D. Li (2011). Colloids Surf. B Biointerfaces88, 196.

    CAS  PubMed  Google Scholar 

  21. 21.

    S. K. Torres, V. L. Campos, C. G. León, S. M. Rodríguez-Llamazares, S. M. Rojas, M. Gonzalez, and M. A. Mondaca (2012). J. Nanoparticle Res.14, 1236.

    Google Scholar 

  22. 22.

    Z. B. Kazempour, M. H. Yazdi, F. Rafiiand, and A. R. Shahverdi (2013). Iran. J. Microb.5, 81.

    Google Scholar 

  23. 23.

    P. S. Kale (2014). Eur. J. Exp. Biol.4, 95.

    Google Scholar 

  24. 24.

    H. J. (1993). Approved standard. National Committee for Clinical Laboratory Standards Antimicrobial Susceptibility Testing NCCLS-M7.

  25. 25.

    S. Goel and P. Mishra (2018). Appl. Microbiol. Biotechnol.102, 1955.

    CAS  PubMed  Google Scholar 

  26. 26.

    N. C. Cady, K. A. McKean, J. Behnke, R. Kubec, A. P. Mosier, S. H. Kasper, D. S. Burz, and R. A. Musah (2012). PLoS ONE7, e38492.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    H. Kuthan, H. J. Haussmann, and J. Werringloer (1986). Biochem. J.237, 175.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    J. E. Visick and S. Clarke (1997). J. Bacteriol.179, 4158.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    M. Mallick, M. Singh, R. Parveen, W. Khan, S. Ahmad, M. Zeeshan Najm, and S. A. Husain (2015). Biomed. Res. Int.2015, 1.

    Google Scholar 

  30. 30.

    M. Sardar and H. Alam Green and sustainable selenium nanoparticles and their biotechnological applications. Green and Sustainable Advanced Materials: Processing and Characterization (Wiley, Hoboken, 2018), p. 333.

    Google Scholar 

  31. 31.

    C. Xu, L. Qiao, Y. Guo, L. Ma, and Y. Cheng (2018). Carbohydr. Polym.195, 576.

    CAS  PubMed  Google Scholar 

  32. 32.

    C. Xu, L. Qiao, L. Ma, S. Yan, Y. Guo, X. Dou, Z. Baohua, and A. Roman (2019). Front. Microbiol.10, 1632.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    M. Kechagia, D. Basoulis, S. Konstantopoulou, D. Dimitriadi, K. Gyftopoulou, N. Skarmoutsou, and E. M. Fakiri (2013). ISRN Nutr.2013, 1.

    Google Scholar 

  34. 34.

    K. R. Pandey, S. R. Naik, and B. V. Vakil (2015). J. Food Sci. Technol.52, 7577.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    H. Alam, N. Khatoon, M. Raza, P. C. Ghosh, and M. Sardar (2019). Bionanoscience9, 96.

    Google Scholar 

  36. 36.

    M. Saravanan, A. K. Vemu, and S. K. Barik (2011). Colloids Surf. B Biointerfaces88, 325.

    CAS  PubMed  Google Scholar 

  37. 37.

    E. Cremonini, E. Zonaro, M. Donini, S. Lampis, M. Boaretti, S. Dusi, P. Melotti, M. M. Lleo, and G. Vallini (2016). Microb. Biotechnol.9, 758.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    X. Huang, X. Chen, Q. Chen, Q. Yu, D. Sunand, and J. Liu (2016). Acta Biomater.30, 397.

    CAS  PubMed  Google Scholar 

  39. 39.

    Y. G. Yuan, Q. L. Peng, and S. Gurunathan (2017). Int. J. Mol. Sci.18, 1.

    Google Scholar 

  40. 40.

    N. Jain, A. Bhargava, M. Rathi, R. V. Dilip, and J. Panwar (2015). PloS ONE10, e0134337.

    PubMed  PubMed Central  Google Scholar 

Download references


We acknowledge to Indian Council of Medical Research [Grant Number 35/8/2012-BMS], Govt. of India for providing financial support.

Author information



Corresponding author

Correspondence to Meryam Sardar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alam, H., Khatoon, N., Khan, M.A. et al. Synthesis of Selenium Nanoparticles Using Probiotic Bacteria Lactobacillus acidophilus and Their Enhanced Antimicrobial Activity Against Resistant Bacteria. J Clust Sci 31, 1003–1011 (2020).

Download citation


  • Lactobacillus acidophilus
  • Selenium nanoparticles
  • Biocompatible
  • Biofilm
  • Antioxidant