Green Synthesis and Characterization of Silver Nanoparticles (AgNPs) Using Leaf Extract of Solanum nigrum and Assessment of Toxicity in Vertebrate and Invertebrate Aquatic Animals


In this study, silver nanoparticle was green synthesized using the leaf extract of Solanum nigrum (Sn-AgNPs) and bio-physically characterized by UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HR-TEM), Zeta potential analysis and Energy dispersive X-ray (EDX) analysis. The ecotoxicity of silver nanoparticle (Sn-AgNPs) were tested against both invertebrate (Ceriodaphnia cornuta and Paramecium sp.) and vertebrate aquatic animal models (Guppy fish, Poecilia reticulata) in comparison with bare silver nitrate. Sn-AgNPs were observed to be less toxic than ionic silver (silver nitrate). The ecotoxicity levels of Sn-AgNPs were found to be varied between tested organisms. Sn-AgNPs caused 100% mortality of freshwater crustacean, C. cornuta at 50 µg mL−1. At concentration below 50 µg mL−1 (10–30 µg mL−1), abnormality in the swimming behavior of C. cornuta was noticed. The ingestion and accumulation of Sn-AgNPs in the intestine of C. cornuta neonates were visualized under light and confocal laser scanning microscopic images. The ecotoxicity of Sn-AgNPs to the freshwater protozoan ciliate, Paramecium sp. showed that 30 µg mL−1 were lethal and produced 100% mortality at the same concentration. The study concludes that Sn-AgNPs was less toxic to both invertebrate and vertebrate models compared to ionic silver nitrate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    J. Zhao and V. Castranova (2011). J. Toxicol. Environ. Health B14, 593–632.

    CAS  Google Scholar 

  2. 2.

    K. Aschberger, C. Micheletti, B. Sokull-Kluttgen, and F. M. Christensen (2011). Environ. Int.37, 1143–1156.

    CAS  PubMed  Google Scholar 

  3. 3.

    C. Blaise, F. Gagne, and J. F. Ferard (2008). Environ. Toxicol.23, 591–598.

    CAS  PubMed  Google Scholar 

  4. 4.

    M. Farre, K. Gajda-Schrantz, L. Kantiani, and D. Barcelo (2009). Anal. Bioanal. Chem.393, 81–95.

    CAS  PubMed  Google Scholar 

  5. 5.

    A. Bermejo-Nogales, M. Fernández, M. L. Fernández-Cruz, and J. M. Navas (2016). Comp. Biochem. Physiol. C.190, 54–65.

    CAS  Google Scholar 

  6. 6.

    F. Gottschalk, T. Y. Sun, and B. Nowack (2013). Environ. Poll.181, 287–300.

    CAS  Google Scholar 

  7. 7.

    K. L. Garner, S. Suh, H. S. Lenihan, and A. A. Keller (2015). Environ. Sci. Technol.49, 5753–5759.

    CAS  PubMed  Google Scholar 

  8. 8.

    A. H. Sayed and H. A. M. Soliman (2017). Mutat. Res. Gen. Tox. En.822, 34–40.

    CAS  Google Scholar 

  9. 9.

    K. Chaloupka, Y. Malam, and A. M. Seifalian (2010). Trends. Biotechnol.28, 580–588.

    CAS  PubMed  Google Scholar 

  10. 10.

    T. M. Benn and P. Westerhoff (2008). Environ. Sci. Technol.42, 4133–4139.

    CAS  PubMed  Google Scholar 

  11. 11.

    Q. Chaudhry, M. Scotter, J. Blackburn, B. Ross, A. Boxall, L. Castle, R. Aitken, and R. Watkins (2008). Food. Addit. Contam.25, 241–258.

    CAS  Google Scholar 

  12. 12.

    L. Geranio, M. Heuberger, and B. Nowack (2009). Environ. Sci. Technol.43, 8113–8118.

    CAS  PubMed  Google Scholar 

  13. 13.

    R. Kaegi, B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller, R. Vonbank, M. Boller, and M. Burkhardt (2010). Environ. Pollut.158, 2900–2905.

    CAS  PubMed  Google Scholar 

  14. 14.

    A. A. Keller, S. McFerran, A. Lazareva, and S. Suh (2013). J. Nanopart. Res.15, 1–17.

    Google Scholar 

  15. 15.

    T.F. Rozan, K.S. Hunter and G. Benoit (1995). Proceedings of the 3rd Argentum International Conference on the Transport, Fate and Effects of Silver in the Environment, Washington, DC, USA, August 6–9, pp. 181–184.

  16. 16.

    L. S. Wen, P. H. Santschi, G. A. Gill, C. L. Paternostro, and R. D. Lehman (1997). Environ. Sci. Technol.31, 723–731.

    CAS  Google Scholar 

  17. 17.

    A. M. E. Badawy, T. P. Luxton, R. G. Silva, K. G. Scheckel, M. T. Suidan, and T. M. Tolaymat (2010). Environ. Sci. Technol.44, 1260–1266.

    PubMed  Google Scholar 

  18. 18.

    M. Tejamaya, I. Römer, R. C. Merrifield, and J. R. Lead (2012). Environ Sci Technol.46, 7011–7017.

    CAS  PubMed  Google Scholar 

  19. 19.

    I. Römer, T. A. White, M. Baalousha, K. Chipman, M. R. Viant, and J. R. Lead (2011). J. Chromatogr. A1218, 4226–4233.

    PubMed  Google Scholar 

  20. 20.

    S. A. Cumberland and J. R. Lead (2009). J. Chromatogr. A1216, 9099–9105.

    CAS  PubMed  Google Scholar 

  21. 21.

    M. Baalousha, Y. Nur, I. Römer, M. Tejamaya, and J. R. Lead (2013). Sci. Total Environ.454, 119–131.

    PubMed  Google Scholar 

  22. 22.

    M. Ahamed, M. Karns, M. Goodson, J. Rowe, S. M. Hussain, J. J. Schlager, and Y. Hong (2008). Toxicol Appl. Pharmacol.233, 404–410.

    CAS  PubMed  Google Scholar 

  23. 23.

    S. Arora, J. Jain, J. Rajwade, and K. Paknikar (2009). Toxicol. Appl. Pharmacol.236, 310–318.

    CAS  PubMed  Google Scholar 

  24. 24.

    P. AshaRani, M. P. Hande, and S. Valiyaveettil (2009). BMC Cell Biol.10, 65.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    B. K. Gaiser, A. Biswas, P. Rosenkranz, M. A. Jepson, J. R. Lead, V. Stone, C. R. Tyler, and T. F. Fernandes (2011). J. Environ. Monit.13, 1227–1235.

    CAS  PubMed  Google Scholar 

  26. 26.

    J. Y. Roh, S. J. Sim, K. Yi, K. Park, K. H. Chung, D. Y. Ryu, and J. Choi (2009). Environ. Sci. Technol.43, 3933–3940.

    CAS  Google Scholar 

  27. 27.

    OECD, (1984). 2–5.

  28. 28.

    EPA (2002).Ed Agency U S E P.

  29. 29.

    J. Bernal and S. Ruvalcaba (1996). Toxicology108, 165–173.

    CAS  PubMed  Google Scholar 

  30. 30.

    M. Ates, V. Demir, R. Adiguzel and Z. Arslan (2013).J. Nanomater. 1–6.

  31. 31.

    Z. A. Zakaria, H. K. Gopalan, and H. Zainal (2006). Yakugaku Zasshi.126, 1171–1178.

    CAS  PubMed  Google Scholar 

  32. 32.

    B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, R. Sudhakaran, N. Gobi, and G. Shanthini (2016). Biocatal. Agric. Biotechnol.8, 189–196.

    Google Scholar 

  33. 33.

    B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, K. Pandiselvi, M. Rajamohamed Kalanjiam, K. Murugan, and G. Benelli (2017). Microb. Pathog.104, 268–277.

    CAS  PubMed  Google Scholar 

  34. 34.

    USEPA 2002.5th Edn. EPA-821-R-02-012.

  35. 35.

    S. Vijayakumar, B. Malaikozhundan, N. Gobi, B. Vaseeharan, and C. Murthy (2016). Limnologica.61, 44–51.

    CAS  Google Scholar 

  36. 36.

    H. W. Bischoff and H. C. Bold (1983). Univ. Texas Publ.6318, 96.

    Google Scholar 

  37. 37.

    H. Hosoya, K. Kimura, S. Matsuda, M. Kitamura, T. Takahashi, and T. Kosaka (1995). Zool. Sci.12, 807–810.

    CAS  Google Scholar 

  38. 38.

    R. M. Shahjahan, M. J. Ahmed, R. A. Begunand, and M. A. Rashid (2013). J. Asiat. Soc. Bangladesh Sci.39, 259–267.

    Google Scholar 

  39. 39.

    N. S. Taylor, R. J. Weber, A. D. Southam, T. G. Payne, O. Hrydziuszko, T. N. Arvanitis, and M. R. Viant (2009). Metabolomics.5, 44–58.

    CAS  Google Scholar 

  40. 40.

    M. Yilmaz, A. Gül, and E. Karaköse (2004). Chemosphere.56, 375–380.

    CAS  PubMed  Google Scholar 

  41. 41.

    W. Fan, Q. Li, X. Yang, and L. Zhang (2013). PLOS ONE.8, 1–6.

    Google Scholar 

  42. 42.

    M. R. Bindhu and M. Umadevi (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc.135, 373–378.

    CAS  PubMed  Google Scholar 

  43. 43.

    S. Lokina, A. Stephen, V. Kaviyarasan, C. Arulvasu, and V. Narayanan (2014). Eur. J. Med. Chem.76, 256–263.

    CAS  PubMed  Google Scholar 

  44. 44.

    D. S. Kumar, K. V. Sharathnath, P. Yogeshwaran, A. Harani, K. Sudhakar, P. Sudha, and B. David (2010). Int. J. Pharm. Sci. Res.1, 95–100.

    Google Scholar 

  45. 45.

    G. Leela Prakash, J. C. Rose, B. M. Gowtham, J. P. Krishna, and A. S. Prasad (2011). Pharmacophore2, 244–252.

    CAS  Google Scholar 

  46. 46.

    C. A. Annapoorani (2013). Int. J. Pharm. Res. Dev.5, 01–06.

    Google Scholar 

  47. 47.

    B. Ajitha, Y.A.K. Reddy and P.S. Reddy, J Photochem Photobiol B. 146, 1–9.

  48. 48.

    H. L. Su, C. C. Chou, D. J. Hung, S. H. Lin, I. C. Pao, J. H. Lin, F. L. Huang, R. X. Dong, and J. J. Lin (2009). Biomaterials.30, 5979–5987.

    CAS  PubMed  Google Scholar 

  49. 49.

    J. Fabrega, S. N. Luoma, C. R. Tyler, T. S. Galloway, and J. R. Lead (2011). Environ. Int.37, 517–531.

    CAS  PubMed  Google Scholar 

  50. 50.

    E. Oberdorster, S. Zhu, T. M. Blickley, P. McClellan-Green, and M. L. Haasch (2006). Carbon.44, 1112–1120.

    Google Scholar 

  51. 51.

    K. M. Newton, H. L. Puppala, C. L. Kitchens, V. L. Colvin, and S. J. Klainey (2013). Environ. Toxicol. Chem.32, 2356–2364.

    CAS  PubMed  Google Scholar 

  52. 52.

    M. Heinlaan, A. Ivask, I. Blinova, H. C. Dubourguier, and A. Kahru (2008). Chemosphere.71, 1308–1316.

    CAS  PubMed  Google Scholar 

  53. 53.

    I. Blinova, A. Ivask, M. Heinlaan, M. Mortimer, and A. Kahru (2010). Environ. Pollut.158, 41–47.

    CAS  PubMed  Google Scholar 

  54. 54.

    R. J. Griffitt, J. Luo, J. Gao, J. C. Bonzongo, and D. S. Barber (2008). Environ. Toxicol. Chem.27, 1972–1978.

    CAS  PubMed  Google Scholar 

  55. 55.

    K. Bilberg, K. B. Doving, K. Beedholm, and E. Baatrup (2011). Aquat. Toxicol.104, 145–152.

    CAS  PubMed  Google Scholar 

  56. 56.

    L. K. Adams, D. Y. Lyon, A. McIntosh, and P. J. J. Alvarez (2006). Water Res.40, 3527–3532.

    CAS  PubMed  Google Scholar 

  57. 57.

    RH. Peters and R. De Bernardi (1987). Daphnia, Consiglionazionaledellerecherche´, Institutoitaliano di, idrobiologia, VerbaniaPallanza.

  58. 58.

    M. C. Artal, R. D. Holtz, F. Kummrow, O. L. Alves, and G. A. Umbuzeiro (2013). Environ. Toxicol. Chem.32, 908–912.

    CAS  PubMed  Google Scholar 

  59. 59.

    K. P. Tavares, A. Caloto-Oliveira, D. S. Vicentini, S. P. Melegari, W. G. Matias, S. Barbosa, and F. Kummrow (2014). Ecotoxicol. Environ. Contam.9, 43–50.

    Google Scholar 

  60. 60.

    N. Strigul, L. Vaccari, C. Galdun, M. Wazne, X. Liu, C. Christodoulatos, and K. Jasinkiewicz (2009). Desalination248, 771–782.

    CAS  Google Scholar 

  61. 61.

    M. Morange (2006). J Biosci.31, 27–30.

    PubMed  Google Scholar 

  62. 62.

    L. Kvitek, M. Vanickova, A. Panacek, J. Soukupova, M. Dittrich, E. Valentova, R. Prucek, M. Bancirova, D. Milde, and R. Zboril (2009). J. Phys. Chem. C113, 4296–4300.

    CAS  Google Scholar 

  63. 63.

    J. García Alonso, F. R. Khan, S. K. Misra, M. Turmaine, B. D. Smith, P. S. Rainbow, S. N. Luoma, and E. Valsami-Jones (2011). Environ. Sci. Technol.45, 4630–4636.

    PubMed  Google Scholar 

  64. 64.

    A. V. Nebeker, C. K. McAuliffe, R. Mshar, and D. G. Stevens (1983). Environ. Toxicol. Chem.2, (9), 5–104.

    Google Scholar 

  65. 65.

    A. Bianchini, M. Grosell, S. M. Gregory, and C. M. Wood (2002). Environ. Sci. Technol.36, 1763–1766.

    CAS  PubMed  Google Scholar 

  66. 66.

    T. P. Morgan and C. M. Wood (2004). Environ. Toxicol. Chem.23, 1261–1267.

    CAS  PubMed  Google Scholar 

  67. 67.

    J. A. Kovriznych, R. Sotníkova, D. Zeljenkova, E. Rollerova, E. Szabova, and S. Wimmerova (2013). Interdiscip. Toxicol.6, 67–73.

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    B. C. Lee, K. T. Kim, J. G. Cho, J. W. Lee, T. K. Ryu, J. H. Yoon, S. H. Lee, C. N. Duong, I. C. Eon, P. J. Kim, and K. H. Choi (2012). Mol. Cell. Toxicol.8, 357–366.

    CAS  Google Scholar 

  69. 69.

    K. Bilberg, M.B. Hovgaard, F. Besenbacher and E. Baatrup (2012). J. Toxicol. 1–9.

  70. 70.

    P. V. Asharani, Y. I. Lian Wu, Z. Gong, and S. Valiyaveettil (2008). Nanotechnology19, 255102.

    CAS  PubMed  Google Scholar 

  71. 71.

    C. Fernandes, A. Fontaínhas-Fernandes, E. Rocha, and M. A. Salgado (2008). Environ. Monit. Assess.145, 315–322.

    CAS  PubMed  Google Scholar 

  72. 72.

    G. Federacy, B. J. Shaw, and R. D. Handy (2007). Aquat. Toxicol.84, 415–430.

    Google Scholar 

  73. 73.

    Y. Wu and Q. Zhou (2013). Environ. Toxicol. Chem.32, 165–173.

    CAS  PubMed  Google Scholar 

  74. 74.

    K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. H. N. Xu (2007). ACS Nano1, 133–143.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Y. Min-Kyeong and K. Misook (2008). Bull. Korean Chem. Soc.29, 1179–1184.

    Google Scholar 

  76. 76.

    R. J. Griffitt, K. N. D. Hyndman, N. D. Denslow, and D. S. Barber (2009). Toxicol. Sci.107, 404–415.

    CAS  PubMed  Google Scholar 

  77. 77.

    A. H. Ringwood, M. McCarthy, T. C. Bates, and D. L. Carroll (2010). Mar. Environ. Res.1, 49–51.

    Google Scholar 

  78. 78.

    A.A. Hadi and S.F. Alwan, Int. J. Pharm. Life Sci.3, 2071–2081.

  79. 79.

    J. Pan and W. Wang (2004). Environ. Pollut.129, 467–477.

    CAS  PubMed  Google Scholar 

  80. 80.

    C. M. Zhao and W. X. Wang (2010). Environ. Sci. Technol.44, 7699–7704.

    CAS  PubMed  Google Scholar 

Download references


The authors thank the RUSA phase 2.0 grant [Ref-24-51-2014-U policy] TN Multi-Gen. Department of Education, Government of India. The corresponding author Dr. B. Vaseeharan thanks the Department of Biotechnology (DBT), New Delhi, India, for financial assistance under the Project Grants Code: BT/PR7903/AAQ/3/638/2013. The third author S. Vijayakumar (SRF) thanks the DST, New Delhi, India for financial support under INSPIRE programme (INSPIRE Fellow-IF140145). The authors gratefully acknowledge the University Scientific Instrumentation Centre (USIC) for providing Confocal laser scanning microscopy, XRD and FTIR instrumental facilities to this research.

Author information



Corresponding author

Correspondence to Baskaralingam Vaseeharan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 352 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jenifer, A.A., Malaikozhundan, B., Vijayakumar, S. et al. Green Synthesis and Characterization of Silver Nanoparticles (AgNPs) Using Leaf Extract of Solanum nigrum and Assessment of Toxicity in Vertebrate and Invertebrate Aquatic Animals. J Clust Sci 31, 989–1002 (2020).

Download citation


  • Green synthesis
  • Silver nanoparticles
  • Nano manufacturing
  • Ecotoxicity
  • Aquatic entry
  • Bioaccumulation