A Novel Ag(I)-Containing Polyoxometalate-Based MOF for Visible-Light-Driven Water Oxidation


A novel 3D Ag(I)-containing polyoxometalate-based MOF of H17[Ag9(AgH8W11O44)2(BPY)9]·2.5H2O (WAgBPY; BPY = 4,4′-bipyridine) has been solvothermally synthesized, and structurally characterized by elemental analyses, IR spectrum, UV–Vis spectrum, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. WAgBPY exhibits highly efficient photocatalytic O2 production (964 μmol g−1 in the first 10 min) under visible-light irradiation. More interestingly, transient photocurrent experiments confirm the charge separation and transfer process for the possible mechanism in the photocatalytic reaction. The high photocatalytic efficiency, high stability and good recyclability of the catalyst WAgBPY demonstrates that Ag(I)-containing polyoxometalate units are crucial factor for water oxidation over heterogeneous systems. The successful synthesis of WAgBPY not only enriches polyoxometalate-based hybrid materials, but also represents the advantages of the Ag(I)-containing complexes for the potential applications such as heterogeneous photocatalysis and so on.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    X. Du, J. Zhao, J. Mi, Y. Ding, P. Zhou, B. Ma, J. Zhao, and J. Song (2015). Nano Energy16, 247–255.

    CAS  Article  Google Scholar 

  2. 2.

    X. Chen, C. Li, M. Grätzel, R. Kostecki, and S. S. Mao (2012). Chem. Soc. Rev.41, 7909–7937.

    CAS  Article  Google Scholar 

  3. 3.

    W. Rüttinger and G. C. Dismukes (1997). Chem. Rev.97, 1–24.

    Article  Google Scholar 

  4. 4.

    Y. Liu, R. Xiang, X. Du, Y. Ding, and B. Ma (2014). Chem. Commun.50, 12779–12782.

    CAS  Article  Google Scholar 

  5. 5.

    N. V. Izarova, M. T. Pope, and U. Kortz (2012). Angew. Chem. Int. Ed.51, 9492–9510.

    CAS  Article  Google Scholar 

  6. 6.

    X. Du, Y. Ding, F. Song, B. Ma, J. Zhao, and J. Song (2015). Chem. Commun.51, 13925–13928.

    CAS  Article  Google Scholar 

  7. 7.

    Z. Huang, Z. Luo, Y. V. Geletii, J. W. Vickers, Q. Yin, D. Wu, Y. Hou, Y. Ding, J. Song, D. G. Musaev, C. L. Hill, and T. Lian (2011). J. Am. Chem. Soc.133, 2068–2071.

    CAS  Article  Google Scholar 

  8. 8.

    F. Song, Y. Ding, B. Ma, C. Wang, Q. Wang, X. Du, S. Fu, and J. Song (2013). Energy Environ. Sci.6, 1170–1184.

    CAS  Article  Google Scholar 

  9. 9.

    M. Ranocchiari and J. A. Van Bokhoven (2011). Phys. Chem. Chem. Phys.13, 6388–6396.

    CAS  Article  Google Scholar 

  10. 10.

    A. Dhakshinamoorthy, M. Alvaro, and H. Garcia (2012). Chem. Commun.48, 11275–11288.

    CAS  Article  Google Scholar 

  11. 11.

    Y. Xu, B. Li, S. Zheng, P. Wu, J. Zhan, H. Xue, Q. Xu, and H. Pang (2018). J. Mater. Chem. A6, 22070–22076.

    CAS  Article  Google Scholar 

  12. 12.

    A. Corma, H. García, and F. X. L. i Xamena (2010). Chem. Rev.110, 4606–4655.

    CAS  Article  Google Scholar 

  13. 13.

    C. Wang, J.-L. Wang, and W. Lin (2012). J. Am. Chem. Soc.134, 19895–19908.

    CAS  Article  Google Scholar 

  14. 14.

    D. Shi, C. He, B. Qi, C. Chen, J. Niu, and C. Duan (2015). Chem. Sci.6, 1035–1042.

    CAS  Article  Google Scholar 

  15. 15.

    D. Shi, C. He, W. Sun, Z. Ming, C. Meng, and C. Duan (2016). Chem. Commun.52, 4714–4717.

    CAS  Article  Google Scholar 

  16. 16.

    S. R. Bajpe, C. E. A. Kirschhock, A. Aerts, E. Breynaert, G. Absillis, T. N. Parac-Vogt, L. Giebeler, and J. A. Martens (2010). Chem. Eur. J.16, 3926–3932.

    CAS  Article  Google Scholar 

  17. 17.

    S. R. Bajpe, E. Breynaert, D. Mustafa, M. Jobbágy, A. Maes, J. A. Martens, and C. E. A. Kirschhock (2011). J. Mater. Chem.21, 9768–9771.

    CAS  Article  Google Scholar 

  18. 18.

    G. Paille, M. Gomez-Mingot, C. Roch-Marchal, B. Lassalle-Kaiser, P. Mialane, M. Fontecave, C. Mellot-Draznieks, and A. Dolbecq (2018). J. Am. Chem. Soc.140, 3613–3618.

    CAS  Article  Google Scholar 

  19. 19.

    D. Shi, R. Zheng, C.-S. Liu, D.-M. Chen, J. Zhao, and M. Du (2019). Inorg. Chem.58, 7229–7235.

    CAS  Article  Google Scholar 

  20. 20.

    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Cryst.42, 339–341.

    CAS  Article  Google Scholar 

  21. 21.

    D. Shi, C.-J. Cui, M. Hu, A.-H. Ren, L.-B. Song, C.-S. Liu, and M. Du (2019). J. Mater. Chem. C7, 10211–10217.

    CAS  Article  Google Scholar 

  22. 22.

    D.-Y. Shi, J.-W. Zhao, L.-J. Chen, P.-T. Ma, J.-P. Wang, and J.-Y. Niu (2012). CrystEngComm14, 3108–3119.

    CAS  Article  Google Scholar 

  23. 23.

    J. Zhao, D. Shi, L. Chen, X. Cai, Z. Wang, P. Ma, J. Wang, and J. Niu (2012). CrystEngComm14, 2797–2806.

    CAS  Article  Google Scholar 

  24. 24.

    D. Shi, R. Zheng, M.-J. Sun, X. Cao, C.-X. Sun, C.-J. Cui, C.-S. Liu, J. Zhao, and M. Du (2017). Angew. Chem. Int. Ed.56, 14637–14641.

    CAS  Article  Google Scholar 

  25. 25.

    D. Shi, L. Zeng, Z. Ming, C. He, C. Meng, and C. Duan (2016). RSC Adv.6, 51936–51940.

    CAS  Article  Google Scholar 

  26. 26.

    C. Kong, S. Min, and G. Lu (2014). ACS Catal.4, 2763–2769.

    CAS  Article  Google Scholar 

  27. 27.

    X.-Y. Dong, M. Zhang, R.-B. Pei, Q. Wang, D.-H. Wei, S.-Q. Zang, Y.-T. Fan, and T. C. W. Mak (2016). Angew. Chem. Int. Ed.55, 2073–2077.

    CAS  Article  Google Scholar 

  28. 28.

    Y. V. Geletii, Z. Huang, Y. Hou, D. G. Musaev, T. Lian, and C. L. Hill (2009). J. Am. Chem. Soc.131, 7522–7523.

    CAS  Article  Google Scholar 

Download references


We are grateful to the support from the National Natural Science Foundation of China (21701147), State Key Laboratory of Fine Chemicals (KF1701), Open Research Fund of Henan Key Laboratory of Polyoxometalate Chemistry (HNPOMKF1604), and the Startup Fund for PhDs of Natural Scientific Research of Zhengzhou University of Light Industry (2016BSJJ026).

Author information



Corresponding authors

Correspondence to Dongying Shi or Chunsen Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.


Supplementary material 1 (DOC 15779 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Shi, D., Nie, Z. et al. A Novel Ag(I)-Containing Polyoxometalate-Based MOF for Visible-Light-Driven Water Oxidation. J Clust Sci 31, 983–988 (2020). https://doi.org/10.1007/s10876-019-01703-8

Download citation


  • Polyoxometalate
  • Silver
  • Metal–organic framework
  • Photocatalysis
  • Water oxidation