Effects of Liquid Ablation Environment on the Characteristics of TiO2 Nanoparticles


The objective of this study is to investigate the effects of liquid environment on the properties of TiO2 nanoparticles. TiO2 nanoparticles were synthesized by pulsed laser ablation method in distilled water, acetone, and CTAB. To investigate the structural properties of samples X-ray diffraction pattern, transmission electron microscopy, and scanning electron microscopy were employed. UV–Vis–NIR absorption spectroscopy, FTIR and photoluminescence of TiO2 nanoparticles were used to study their optical properties. Results show that ablation liquid environment has strong effect on size and adhesion of nanoparticles. It is found that ablation of Ti target in distilled water medium leads to formation of smaller size nanoparticles with narrower size distributions in comparison with two other liquid environments. Adhesion of nanoparticles produced in the CTAB and acetone environment are smaller than adhesion of nanoparticles produced in the distilled water environment. Direct bandgap energy of nanoparticles was found to be 3.85, 3.72 and 3.18 eV for sample produced in water, CTAB, and acetone medium respectively. TiO2 nanoparticles were found almost spherical in shape and polycrystalline in all liquids.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    N. E. Jasbi and D. Dorranian (2017). Dependence of laser ablation produced TiO2 nanoparticles on the ablation environment temperature. Opt. Quantum Electron.49, 209.

    Article  Google Scholar 

  2. 2.

    E. Giorgetti, M. M. Miranda, S. Caporali, P. Canton, P. Marsili, C. Vergari, and F. Giammanco (2015). TiO2 nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase. J. Alloys Compd.643, S75–S79.

    CAS  Article  Google Scholar 

  3. 3.

    L. Li, J. Yan, T. Wang, Z. J. Zhao, J. Zhang, J. Gong, and N. Guan (2015). Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun.6, 5881.

    Article  Google Scholar 

  4. 4.

    G. G. Guillén, S. Shaji, M. M. Palma, D. Avellaneda, G. A. Castillo, T. D. Roy, D. G. Gutiérrez, and B. Krishnan (2017). Effects of ablation energy and post-irradiation on the structure and properties of titanium dioxide nanomaterials. Appl. Surf. Sci.405, 183–194.

    Article  Google Scholar 

  5. 5.

    X. Chen, D. Zhao, K. Liu, C. Wang, L. Liu, B. Li, Z. Zhang, and D. Shen (2015). Laser-modified black titanium oxide nanospheres and their photocatalytic activities under visible light. ACS Appl. Mater. Interfaces7, 16070–16077.

    CAS  Article  Google Scholar 

  6. 6.

    X. Chen and S. S. Mao (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev.107, 2891–2959.

    CAS  Article  Google Scholar 

  7. 7.

    V. A. Zuñiga-Ibarra, S. Shaji, B. Krishnan, J. Johny, S. S. Kanakkillam, D. A. Avellaneda, J. A. Martinez, T. D. Roy, and N. A. Ramos-Delgado (2019). Synthesis and characterization of black TiO2 nanoparticles by pulsed laser irradiation in liquid. Appl. Surf. Sci.483, 156–164.

    Article  Google Scholar 

  8. 8.

    E. Solati, L. Dejam, and D. Dorranian (2014). Effect of laser pulse energy and wavelength on the structure, morphology and optical properties of ZnO nanoparticles. Opt. Laser Technol.58, 26–32.

    CAS  Article  Google Scholar 

  9. 9.

    D. Dorranian, E. Solati, and L. Dejam (2012). Photoluminescence of ZnO nanoparticles generated by laser ablation in deionized water. Appl. Phys. A109, 307–314.

    CAS  Article  Google Scholar 

  10. 10.

    E. Solati and D. Dorranian (2016). Nonlinear optical properties of the mixture of ZnO nanoparticles and graphene nanosheets. Appl. Phys. B122, 76.

    Article  Google Scholar 

  11. 11.

    E. Solati and D. Dorranian (2015). Comparison between silver and gold nanoparticles prepared by pulsed laser ablation in distilled water. J. Clust. Sci.26, 727–742.

    CAS  Article  Google Scholar 

  12. 12.

    A. Mehrani, D. Dorranian, and E. Solati (2015). Properties of Au/ZnO nanocomposite prepared by laser irradiation of the mixture of individual colloids. J. Clust. Sci.26, 1743–1754.

    CAS  Article  Google Scholar 

  13. 13.

    P. Azadfar, E. Solati, and D. Dorranian (2018). Properties of Au/Copper oxide nanocomposite prepared by green laser irradiation of the mixture of individual suspensions. Opt. Mater.78, 388–395.

    Article  Google Scholar 

  14. 14.

    M. Savadkoohi, D. Dorranian, and E. Solati (2018). Using silicon nanoparticles to modify the surface of graphene nanosheets. Mater. Sci. Semiconduct. Process.75, 75–83.

    CAS  Article  Google Scholar 

  15. 15.

    E. Solati, M. Savadkoohi, and D. Dorranian (2018). Nonlinear optical response of graphene/silicon nanocomposites. Opt. Quantum Electron.50, 268.

    Article  Google Scholar 

  16. 16.

    E. Solati, M. Mashayekh, and D. Dorranian (2013). Effects of laser pulse wavelength and laser fluence on the characteristics of silver nanoparticle generated by laser ablation. Appl. Phys. A112, 689–694.

    CAS  Article  Google Scholar 

  17. 17.

    M. Moradi, E. Solati, S. Darvishi, and D. Dorranian (2016). Effect of aqueous ablation environment on the characteristics of ZnO nanoparticles produced by laser ablation. J. Clust. Sci.27, 127–138.

    CAS  Article  Google Scholar 

  18. 18.

    A. Zamiranvari, E. Solati, and D. Dorranian (2017). Effect of CTAB concentration on the properties of graphene nanosheet produced by laser ablation. Opt. Laser Technol.97, 209–218.

    CAS  Article  Google Scholar 

  19. 19.

    E. Solati and D. Dorranian (2016). Effect of temperature on the characteristics of ZnO nanoparticles produced by laser ablation in water. Bull. Mater. Sci.39, 1677–1684.

    CAS  Article  Google Scholar 

  20. 20.

    E. Solati and D. Dorranian (2017). Estimation of lattice strain in ZnO nanoparticles produced by laser ablation at different temperatures. J. Appl. Spectrosc.84, 490–497.

    CAS  Article  Google Scholar 

  21. 21.

    E. Solati, E. Vaghri, and D. Dorranian (2018). Effects of wavelength and fluence on the graphene nanosheets produced by pulsed laser ablation. Appl. Phys. A124, 749.

    CAS  Article  Google Scholar 

  22. 22.

    S. Kamali, E. Solati, and D. Dorranian (2019). Effect of laser fluence on the characteristics of graphene nanosheets produced by pulsed laser ablation in water. J. Appl. Spectrosc.86, 238–243.

    CAS  Article  Google Scholar 

  23. 23.

    A. Chaturvedi, M. P. Joshi, P. Mondal, A. K. Sinha, and A. K. Srivastava (2017). Growth of anatase and rutile phase TiO2 nanoparticles using pulsed laser ablation in liquid: influence of surfactant addition and ablation time variation. Appl. Surf. Sci.396, 303–309.

    CAS  Article  Google Scholar 

  24. 24.

    H. Sadeghi, E. Solati, and D. Dorranian (2019). Producing graphene nanosheets by pulsed laser ablation: effects of liquid environment. J. Laser Appl.31, 042003.

    Article  Google Scholar 

  25. 25.

    C. H. Liang, Y. Shimizu, T. Sasaki, and N. Koshizaki (2005). Preparation of ultrafine TiO2 nanocrystals via pulsed-laser ablation of titanium metal in surfactant solution. Appl. Phys. A80, 819–822.

    CAS  Article  Google Scholar 

  26. 26.

    M. Zimbone, M. A. Buccheri, G. Cacciato, R. Sanz, G. Rappazzo, S. Boninelli, R. Reitano, L. Romano, V. Privitera, and M. G. Grimaldi (2015). Photocatalytical and antibacterial activity of TiO2 nanoparticles obtained by laser ablation in water. Appl. Catal. B Environ.165, 487–494.

    CAS  Article  Google Scholar 

  27. 27.

    F. Barreca, N. Acacia, E. Barletta, D. Spadaro, G. Currò, and F. Neri (2010). Small size TiO2 nanoparticles prepared by laser ablation in water. Appl. Surf. Sci.256, 6408–6412.

    CAS  Article  Google Scholar 

  28. 28.

    N. E. Jasbi and D. Dorranian (2016). Effect of aging on the properties of TiO2 nanoparticle. J. Theor. Appl. Phys.10, 157–161.

    Article  Google Scholar 

  29. 29.

    P. Jafarkhani, S. Dadras, M. J. Torkamany, and J. Sabbaghzadeh (2010). Synthesis of nanocrystalline titania in pure water by pulsed Nd: YAG Laser. Appl. Surf. Sci.256, 3817–3821.

    CAS  Article  Google Scholar 

  30. 30.

    A. S. Nikolov, P. A. Atanasov, D. R. Milev, T. R. Stoyanchov, A. D. Deleva, and Z. Y. Peshev (2009). Synthesis and characterization of TiOx nanoparticles prepared by pulsed-laser ablation of Ti target in water. Appl. Surf. Sci.255, 5351–5354.

    CAS  Article  Google Scholar 

  31. 31.

    V. Amendola and M. Meneghetti (2013). What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys.15, 3027–3046.

    CAS  Article  Google Scholar 

  32. 32.

    A. Kanitz, J. S. Hoppius, M. del Mar Sanz, M. Maicas, A. Ostendorf, and E. L. Gurevich (2017). Synthesis of magnetic nanoparticles by ultrashort pulsed laser ablation of iron in different liquids. ChemPhysChem18, 1155–1164.

    CAS  Article  Google Scholar 

  33. 33.

    J. Tauc and A. Menth (1972). States in the gap. J. Noncryst. solids8, 569–585.

    Article  Google Scholar 

  34. 34.

    R. M. Tilaki, A. Iraji zad, and S. M. Mahdavi (2006). Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl. Phys. A84, 215–219.

    CAS  Article  Google Scholar 

  35. 35.

    M. H. Mahdieh and B. Fattahi (2015). Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence. Appl. Surf. Sci.329, 47–57.

    CAS  Article  Google Scholar 

  36. 36.

    J. M. Notestein, E. Iglesia, and A. Katz (2007). Photoluminescence and charge-transfer complexes of calixarenes grafted on TiO2 nanoparticles. Chem. Mater.19, 4998–5005.

    CAS  Article  Google Scholar 

  37. 37.

    N. D. Abazović, M. I. Čomor, M. D. Dramićanin, D. J. Jovanović, S. P. Ahrenkiel, and J. M. Nedeljković (2006). Photoluminescence of anatase and rutile TiO2 particles. J. Phys. Chem. B110, 25366–25370.

    Article  Google Scholar 

  38. 38.

    J. Liqiang, S. Xiaojun, C. Weimin, X. Zili, D. Yaoguo, and F. Honggang (2003). The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity. J. Phys. Chem. Solids64, 615–623.

    Article  Google Scholar 

  39. 39.

    B. Santara, P. K. Giri, K. Imakita, and M. Fujii (2013). Evidence for Ti interstitial induced extended visible absorption and near infrared photoluminescence from undoped TiO2 nanoribbons: an in situ photoluminescence study. J. Phys. Chem. C117, 23402–23411.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Davoud Dorranian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solati, E., Aghazadeh, Z. & Dorranian, D. Effects of Liquid Ablation Environment on the Characteristics of TiO2 Nanoparticles. J Clust Sci 31, 961–969 (2020). https://doi.org/10.1007/s10876-019-01701-w

Download citation


  • TiO2 nanoparticles
  • Laser ablation
  • Liquid ablation environment