Spectrum and Physical Properties of C70 Under the External Electric Field


Fullerene C70 has a broad application prospect. It is of great significance for investigating the properties of fullerene C70 under the external electric field. The dipole moment, energy gap and infrared spectrum of fullerene C70 molecule under external electric field (0–0.040 atomic units) are studied with density functional theory at B3PW91/3-21G level. The dipole moment increases almost linearly from 0.005 to 65.005 Debye and the energy gap decreases continuously. The effect of external electric field on the infrared spectrum is great and it can be found that certain vibrational mode become active due to the symmetry reduction due to the external electric field. Meanwhile, the ultraviolet–visible absorption spectra, the excitation wavelength, the excitation energy, and oscillator strength of first fourteen excited states of fullerene C70 under the external electric field are also studied with the time-dependent density functional theory at B3PW91/3-21G level. It is found that the absorption peak of fullerene C70 occurs red shift from 504.78 to 736.39 nm. The excitation energy decreases rapidly and the excitation wavelength increases a lot with the external electric field. The results can offer an important reference to use external electric field to tune the properties of fullerene C70.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    H. W. Kroto, J. R. Heath, S. C. O`Brien, R. F. Curl, and R. E. Smalley (1985). Nature318, (6042), 162–163.

    CAS  Article  Google Scholar 

  2. 2.

    D. R. Mckenzie, C. A. Davis, D. J. H. Cockayne, D. A. Muller, and A. M. Vassallo (1992). Nature355, (6361), 622–624.

    CAS  Article  Google Scholar 

  3. 3.

    R. C. Haddon, et al. (1991). Nature350, (6316), 320–322.

    CAS  Article  Google Scholar 

  4. 4.

    Y. Wang (1992). Nature356, (6370), 585–587.

    CAS  Article  Google Scholar 

  5. 5.

    F. Matsukura, D. Chiba, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Ohtani, and H. Ohno (2002). Physica E12, 351–355.

    CAS  Article  Google Scholar 

  6. 6.

    H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani (2000). Nature408, (6815), 944–946.

    CAS  Article  Google Scholar 

  7. 7.

    M. A. Roman and S. I. Klokishner (2018). J. Phys. Chem. A122, (46), 9093–9099.

    CAS  Article  Google Scholar 

  8. 8.

    S. Shaik, D. Mandal, and R. Ramanan (2016). Nat. Chem.8, (12), 1091–1098.

    CAS  Article  Google Scholar 

  9. 9.

    C. D. Fu, Y. He, and J. Pfaendtner (2019). J. Phys. Chem. A123, (14), 3080–3089.

    CAS  Article  Google Scholar 

  10. 10.

    M. T. Baei, A. S. Ghasemi, E. T. Lemeski, A. Soltani, and N. Gholami (2016). J. Clust. Sci.27, (4), 1081–1096.

    CAS  Article  Google Scholar 

  11. 11.

    C. V. Nguyen, H. D. Bui, T. D. Nguyen, and K. D. Pham (2019). Chem. Phys. Lett.724, 1–7.

    CAS  Article  Google Scholar 

  12. 12.

    S. X. Li, Z. P. Zhang, Z. W. Long, and S. J. Qin (2017). Acta Phys. Sin.66, (10), 103102.

    Google Scholar 

  13. 13.

    J. X. Ren, B. Liu, X. Xu, L. J. Zhang, Y. Y. Mao, X. Y. Wu, Y. Zhang, L. Jiang, and X. J. Xin (2019). Opt. Express27, (3), 2732–2746.

    Article  Google Scholar 

  14. 14.

    M. J. Frisch, et al. GAUSSIAN-09, Revision C.01 (GAUSSIAN Inc., Wallingford, CT, 2010).

    Google Scholar 

  15. 15.

    G. Roth and P. Adelmann (1992). J. De Phys. I2, (8), 1541–1548.

    CAS  Google Scholar 

  16. 16.

    P. Avouris, I. W. Lyo, and P. Molinas-Mata (1995). Chem. Phys. Lett.240, (5–6), 423–428.

    CAS  Article  Google Scholar 

  17. 17.

    L. Huang, L. Massa, and C. F. Matta (2014). Carbon76, 310–320.

    CAS  Article  Google Scholar 

  18. 18.

    T. Zuo and A. D. Bandrauk (1995). Phys. Rev. A52, (4), 2511–2514.

    Article  Google Scholar 

  19. 19.

    S. Chelkowski, T. Zuo, O. Atabek, and A. D. Bandrauk (1995). Phys. Rev. A52, (4), 2977–2983.

    CAS  Article  Google Scholar 

  20. 20.

    S. Sowlati-Hashjin and C. F. Matta (2013). J. Chem. Phys.139, (14), 144101.

    Article  Google Scholar 

  21. 21.

    M. S. Baba, T. S. L. Narasimhan, R. Balasubramanian, and C. K. Mathews (1993). Rapid Commun. Mass Spectrom.7, (12), 1141–1144.

    CAS  Article  Google Scholar 

  22. 22.

    P. B. Corkum, N. H. Burnett, and F. Brunel (1989). Phys. Rev. Lett.62, (11), 1259–1262.

    CAS  Article  Google Scholar 

  23. 23.

    L. D. Landau and E. M. Lifshitz Quantum Mechanics (Pergamon Press, New York, 1965).

    Google Scholar 

  24. 24.

    D. Bauer and P. Mulser (1999). Phys. Rev. A59, (1), 569.

    CAS  Article  Google Scholar 

  25. 25.

    D. S. Bethune, G. Meijer, W. C. Tang, et al. (1991). Chem. Phys. Lett.179, 181–186.

    CAS  Article  Google Scholar 

  26. 26.

    K. Raghavachari and C. M. M. Rohlfing (1991). J. Phys. Chem.95, (15), 5768–5773.

    CAS  Article  Google Scholar 

  27. 27.

    P. Bowmar, W. Hayes, M. Kurmoo, P. A. Pattenden, M. A. Green, P. Days, and K. Kikuchi (1994). J. Phys. Condens. Matter6, (17), 3161–3170.

    CAS  Article  Google Scholar 

  28. 28.

    A. V. Tuchin, L. A. Bityutskaya, and E. N. Bormontov (2015). Eur. Phys. J. D69, (3), 87.

    Article  Google Scholar 

Download references


This project is supported by the National Natural Science Foundation of China (Grant Nos. U1932149, 21763207), six talent peaks project in Jiangsu Province (Grant No. 2015-JNHB-011), and Natural Science Foundation of Jiangsu Province of China (No. BK20191395), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China (No. 18KJA140002) and College Students’ Practice Innovation Training Program of Nuist (Grant No. 201910300033Z).

Author information



Corresponding authors

Correspondence to Yuzhu Liu or Mei Xiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiang, Q., Liu, Y., Zhang, X. et al. Spectrum and Physical Properties of C70 Under the External Electric Field. J Clust Sci 31, 951–960 (2020). https://doi.org/10.1007/s10876-019-01700-x

Download citation


  • Fullerene C70
  • External electric field
  • IR spectrum
  • Tunnel ionization
  • Excited states