Skip to main content
Log in

Structural and Electronic Properties of Nano-brass: CuxZny (x + y = 11 − 13) Clusters

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Cu–Zn brasses are one kind of the typical Hume-Rothery alloys, of which the phase stability mechanisms are decided by the electronic effects. Cu–Zn clusters can be considered as a sort of alloys with a particle size at nanometer scale. The structures of small-sized Cu–Zn clusters have been well established up to 10 atoms, but the structural evolution behavior of larger clusters is still not well-known. In this work, the geometric structures of CuxZny clusters in a size range (x + y = 11 − 13) are investigated by using a method combining the genetic algorithm with density functional theory. A series of relevant structures of the clusters are obtained, and the structural evolution diagrams are plotted depending on the relative energy. It was found that the Cu–Zn clusters with even number of valence electrons (n*) exhibit high stability. When n* = 12 and 14, the clusters adopt prolate motifs, which have similar electronic structures to O2 and F2 molecules, respectively, based on the super valence bond model. When n* = 18 and 20, the clusters keep spherical cage motifs, which satisfy the magic numbers of Jellium model and could be viewed as stable superatoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Chem. Rev.108, 845–910.

    Article  CAS  PubMed  Google Scholar 

  2. H.-L. Liu, F. Nosheen, and X. Wang (2015). Chem. Soc. Rev.44, 3056–3078.

    Article  CAS  PubMed  Google Scholar 

  3. H. Zhang, T. Watanabe, M. Okumura, M. Haruta, and N. Toshima (2011). Nat. Mater.11, 49.

    Article  PubMed  CAS  Google Scholar 

  4. M. Sankar, Q. He, M. Morad, J. Pritchard, S. J. Freakley, J. K. Edwards, S. H. Taylor, D. J. Morgan, A. F. Carley, D. W. Knight, C. J. Kiely, and G. J. Hutchings (2012). ACS Nano6, 6600–6613.

    Article  CAS  PubMed  Google Scholar 

  5. S. Pande, T. Jian, N. S. Khetrapal, L.-S. Wang, and X. C. Zeng (2018). J. Phys. Chem. C122, 6947–6954.

    Article  CAS  Google Scholar 

  6. I. Demiroglu, K. Yao, H. A. Hussein, and R. L. Johnston (2017). J. Phys. Chem. C121, 10773–10780.

    Article  CAS  Google Scholar 

  7. W. Benten, N. Nilius, N. Ernst, and H. J. Freund (2005). Phys. Rev. B72, 045403.

    Article  CAS  Google Scholar 

  8. Z. Luo and A. W. Castleman (2014). Acc. Chem. Res.47, 2931–2940.

    Article  CAS  PubMed  Google Scholar 

  9. W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen (1984). Phys. Rev. Lett.52, 2141–2143.

    Article  CAS  Google Scholar 

  10. K. Clemenger (1985). Phys. Rev. B32, 1359–1362.

    Article  CAS  Google Scholar 

  11. W. A. de Heer (1993). Rev. Mod. Phys.65, 611–676.

    Article  Google Scholar 

  12. P. Pyykkö and N. Runeberg (2002). Angew. Chem. Int. Ed.41, 2174–2176.

    Article  Google Scholar 

  13. P. Jena (2013). J. Phys. Chem. Lett.4, 1432–1442.

    Article  CAS  PubMed  Google Scholar 

  14. A. Muñoz-Castro (2013). J. Phys. Chem. Lett.4, 3363–3366.

    Article  CAS  Google Scholar 

  15. V. Chauhan, A. C. Reber, and S. N. Khanna (2018). Nat. Commun.9, 2357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. J. P. Mojica-Sánchez, R. Flores-Moreno, K. Pineda-Urbina, and Z. Gómez-Sandoval (2018). ACS Omega3, 11252–11261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. S. N. Khanna and P. Jena (1992). Phys. Rev. Lett.69, 1664–1667.

    Article  CAS  PubMed  Google Scholar 

  18. P. Jena and Q. Sun (2018). Chem. Rev.118, 5755–5870.

    Article  CAS  PubMed  Google Scholar 

  19. A. C. Reber and S. N. Khanna (2017). Acc. Chem. Res.50, 255–263.

    Article  CAS  PubMed  Google Scholar 

  20. A. W. Castleman and S. N. Khanna (2009). J. Phys. Chem. C113, 2664–2675.

    Article  CAS  Google Scholar 

  21. D. E. Bergeron, P. J. Roach, A. W. Castleman, N. O. Jones, and S. N. Khanna (2005). Science307, 231–235.

    Article  CAS  PubMed  Google Scholar 

  22. H. Häkkinen (2008). Chem. Soc. Rev.37, 1847–1859.

    Article  PubMed  CAS  Google Scholar 

  23. D.-E. Jiang and S. Dai (2009). Inorg. Chem.48, 2720–2722.

    Article  CAS  PubMed  Google Scholar 

  24. M. Zhang, J. Zhang, X. Feng, H. Zhang, L. Zhao, Y. Luo, and W. Cao (2013). J. Phys. Chem. A117, 13025–13036.

    Article  CAS  PubMed  Google Scholar 

  25. X. Zhang, Y. Wang, H. Wang, A. Lim, G. Gantefoer, K. H. Bowen, J. U. Reveles, and S. N. Khanna (2013). J. Am. Chem. Soc.135, 4856–4861.

    Article  CAS  PubMed  Google Scholar 

  26. K. Koyasu and T. Tsukuda (2014). Phys. Chem. Chem. Phys.16, 21717–21720.

    Article  CAS  PubMed  Google Scholar 

  27. L. Cheng and J. Yang (2013). J. Chem. Phys.138, 141101.

    Article  PubMed  CAS  Google Scholar 

  28. L. Cheng, Y. Yuan, X. Zhang, and J. Yang (2013). Angew. Chem. Int. Ed.52, 9035–9039.

    Article  CAS  Google Scholar 

  29. L. Cheng, X. Zhang, B. Jin, and J. Yang (2014). Nanoscale6, 12440–12444.

    Article  CAS  PubMed  Google Scholar 

  30. Z. Tian and L. Cheng (2015). Phys. Chem. Chem. Phys.17, 13421–13428.

    Article  CAS  PubMed  Google Scholar 

  31. L. Yan, L. Cheng, and J. Yang (2015). J. Phys. Chem. C119, 23274–23278.

    Article  CAS  Google Scholar 

  32. L. Liu, P. Li, L.-F. Yuan, L. Cheng, and J. Yang (2016). Nanoscale8, 12787–12792.

    Article  CAS  PubMed  Google Scholar 

  33. H. Wang and L. Cheng (2017). Nanoscale9, 13209–13213.

    Article  CAS  PubMed  Google Scholar 

  34. Q. Zheng, C. Xu, X. Wu, and L. Cheng (2018). ACS Omega3, 14423–14430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. V. J. Keast, J. Ewald, K. S. B. De Silva, M. B. Cortie, B. Monnier, D. Cuskelly, and E. H. Kisi (2015). J. Alloys Compd.647, 129–135.

    Article  CAS  Google Scholar 

  36. K. Freitag, H. Banh, C. Gemel, R. W. Seidel, S. Kahlal, J.-Y. Saillard, and R. A. Fischer (2014). Chem. Commun.50, 8681–8684.

    Article  CAS  Google Scholar 

  37. K. Freitag, C. Gemel, P. Jerabek, I. M. Oppel, R. W. Seidel, G. Frenking, H. Banh, K. Dilchert, and R. A. Fischer (2015). Angew. Chem. Int. Ed.127, 4445–4449.

    Article  Google Scholar 

  38. R. S. Dhaka, S. Banik, A. K. Shukla, V. Vyas, A. Chakrabarti, S. R. Barman, B. L. Ahuja, and B. K. Sharma (2008). Phys. Rev. B78, 073107.

    Article  CAS  Google Scholar 

  39. A. A. Pankova, V. A. Blatov, G. D. Ilyushin, and D. M. Proserpio (2013). Inorg. Chem.52, 13094–13107.

    Article  CAS  PubMed  Google Scholar 

  40. J. Hambrock, M. K. Schröter, A. Birkner, C. Wöll, and R. A. Fischer (2003). Chem. Mater.15, 4217–4222.

    Article  CAS  Google Scholar 

  41. Q. Liu and L. Cheng (2019). J. Alloys Compd.771, (2019), 762–768.

    Article  CAS  Google Scholar 

  42. J. Botticelli, R. Fournier, and M. Zhang (2008). Theor. Chem. Acc.120, 583–589.

    Article  CAS  Google Scholar 

  43. R. L. Johnston (2003). Dalton Trans.22, 4193–4207.

    Article  CAS  Google Scholar 

  44. Z. Tian and L. Cheng (2017). J. Phys. Chem. C121, 20458–20467.

    Article  CAS  Google Scholar 

  45. J. P. Perdew (1986). Phys. Rev. B33, 8822–8824.

    Article  CAS  Google Scholar 

  46. F. Weigend and R. Ahlrichs (2005). Phys. Chem. Chem. Phys.7, 3297–3305.

    Article  CAS  PubMed  Google Scholar 

  47. G.W.T. M. J. Frisch and H. B. Schlegel et al., GAUSSIAN 09, Revision, G. B. 01, Inc., Wallingford, CT, 2009.

  48. U.M. Varetto, version 5.4. 0.8; Swiss National, S. Supercomputing Centre: Manno, 2009.

  49. J. Wang, G. Wang, and J. Zhao (2003). Phys. Rev. A68, 013201.

    Article  CAS  Google Scholar 

  50. B. K. Teo and A. Strizhev (2002). Inorg. Chem.41, 6332–6342.

    Article  CAS  PubMed  Google Scholar 

  51. D. Y. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys.10, 5207–5217.

    Article  CAS  PubMed  Google Scholar 

  52. D. Y. Zubarev and A. I. Boldyrev (2008). J. Org. Chem.73, 9251–9258.

    Article  CAS  PubMed  Google Scholar 

  53. W. Huang, A. P. Sergeeva, H.-J. Zhai, B. B. Averkiev, L.-S. Wang, and A. I. Boldyrev (2010). Nat. Chem.2, 202.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is financed by the National Natural Science Foundation of China (21873001), and by the Foundation of Distinguished Young Scientists of Anhui Province. The calculations were carried out at the High-Performance Computing Center of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longjiu Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Xu, C. & Cheng, L. Structural and Electronic Properties of Nano-brass: CuxZny (x + y = 11 − 13) Clusters. J Clust Sci 31, 601–607 (2020). https://doi.org/10.1007/s10876-019-01698-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01698-2

Keywords

Navigation